Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)\(\sqrt{9-4\sqrt{5}}\)=\(\sqrt{9-\sqrt{80}}\)=\(\sqrt{\dfrac{9+\sqrt{9^2-80}}{2}}-\sqrt{\dfrac{9-\sqrt{9^2-80}}{2}}\)=\(\sqrt{5}\)\(-\)\(\sqrt{4}\)=\(2-\sqrt{5}\)
(dựa theo công thức có sẵn từ một quyển sách nâng cao:\(\sqrt{A\pm\sqrt{B}}\)=\(\sqrt{\dfrac{A+\sqrt{A^2-B}}{2}}\pm\sqrt{\dfrac{A-\sqrt{A^2-B}}{2}}\)
c: \(\Leftrightarrow4x^2-6x+9=16\)
\(\Leftrightarrow4x^2-6x-7=0\)
hay \(x\in\left\{\dfrac{3+\sqrt{37}}{4};\dfrac{3-\sqrt{37}}{4}\right\}\)
d: \(=\sqrt{3}+1-6-3\sqrt{3}+\dfrac{15}{2}+\dfrac{5}{2}\sqrt{3}\)
\(=\dfrac{1}{2}\sqrt{3}+\dfrac{5}{2}\)
\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)
\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)
\(\Leftrightarrow\sqrt{x}-2< 0\)
\(\Leftrightarrow x< 4\)
Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)
KL............
\(2.\) Tương tự bài 1.
\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)
\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)
Câu 1:
a: \(P=\dfrac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b: Để \(2P=2\sqrt{5}+5\) thì \(P=\dfrac{2\sqrt{5}+5}{2}\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+5\right)=2\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+3\right)=2\)
hay \(x=\dfrac{4}{29+12\sqrt{5}}=\dfrac{4\left(29-12\sqrt{5}\right)}{121}\)
Câu 1:
a: \(P=\dfrac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b: Để \(2P=2\sqrt{5}+5\) thì \(P=\dfrac{2\sqrt{5}+5}{2}\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+5\right)=2\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+3\right)=2\)
hay \(x=\dfrac{4}{29+12\sqrt{5}}=\dfrac{4\left(29-12\sqrt{5}\right)}{121}\)
Bài 1:
a: \(A=\left(\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{9x-1}\right):\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)
\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1+5\sqrt{x}+1}{9x-1}:\dfrac{3}{3\sqrt{x}+1}\)
\(=\dfrac{3x+3\sqrt{x}}{9x-1}\cdot\dfrac{3\sqrt{x}+1}{3}=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)
b: \(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{1}\cdot\dfrac{\sqrt{x}-1}{2}\)
\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)
a)
ĐKXĐ: \(x> \frac{-5}{7}\)
Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)
\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)
Vậy......
b) ĐKXĐ: \(x\geq 5\)
\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)
(hoàn toàn thỏa mãn)
Vậy..........
c) ĐK: \(x\in \mathbb{R}\)
Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)
\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)
Khi đó:
\(2x-x^2+\sqrt{6x^2-12x+7}=0\)
\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)
\(\Leftrightarrow 7-a^2+6a=0\)
\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)
\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\) vì \(a\geq 0\)
\(\Rightarrow 6x^2-12x+7=a^2=49\)
\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)
\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)
(đều thỏa mãn)
Vậy..........
Bài 1:
a: \(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
b: \(x=2+2\sqrt{5}+2-2\sqrt{5}=4\)
Khi x=4 thì \(P=\dfrac{4+2+1}{2}=\dfrac{7}{2}\)
a) tương tự : https://hoc24.vn/hoi-dap/question/650070.html
b) ta có : \(A=\dfrac{x\sqrt{x}-6x+9\sqrt{x}}{4\left(\sqrt{x}-1\right)}.\left(\dfrac{3\sqrt{x}-5}{\sqrt{x}-3}-1\right)\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)^2}{4\left(\sqrt{x}-1\right)}.\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}\right)=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2}=\dfrac{x-3\sqrt{x}}{2}\)
\(\Rightarrow x-3\sqrt{x}-2A=0\)
vì phương trình này luôn có nghiệm \(\Rightarrow\Delta\ge0\)
\(\Leftrightarrow3^2-4\left(-2A\right)=9+8A\ge0\Leftrightarrow A\ge\dfrac{-9}{8}\)
\(\Rightarrow\) GTNN của \(A=\dfrac{-9}{8}\) khi \(\sqrt{x}=\dfrac{-b}{2a}=\dfrac{3}{2}\)\(\Leftrightarrow x=\dfrac{9}{4}\)