Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(2+6a+3b+6\sqrt{2bc}\right)\left(\sqrt{2b^2+2\left(a+c\right)^2}+3\right)}{2a+b+2\sqrt{2bc}}\ge16\)
Ap dung bdt amgm va bdt bunhiacpoxki taok:
\(VT=\frac{\left(2+6a+3b+6\sqrt{2bc}\right)\left(\sqrt{2b^2+2\left(a+c\right)^2}+3\right)}{2a+b+2\sqrt{2bc}}\)
\(=\left(\sqrt{2\left(b^2+\left(a+c\right)^2\right)}+3\right)\left(\frac{2}{2a+b+2\sqrt{2bc}}+3\right)\)
\(\ge\left(\sqrt{2\cdot\frac{\left(a+b+c\right)^2}{2}}+3\right)\left(\frac{2}{2a+b+b+2c}+3\right)\)
\(=\left(a+b+c+3\right)\left(\frac{1}{a+b+c}+3\right)\)
\(\ge\left(1+3\right)^2=16=VP\)
\(\Leftrightarrow\dfrac{2+3\left(2a+b+2\sqrt{2bc}\right)}{2a+b+2\sqrt{2bc}}\ge\dfrac{16}{\sqrt{2b^2+2\left(a+c\right)^2}+3}\)
\(\Leftrightarrow3+\dfrac{2}{2a+b+2\sqrt{2bc}}\ge\dfrac{16}{\sqrt{2b^2+2\left(a+c\right)^2}+3}\)
Do \(\dfrac{2}{2a+b+2\sqrt{2bc}}\ge\dfrac{2}{2a+b+b+2c}=\dfrac{1}{a+b+c}\)
Và \(2b^2+2\left(a+c\right)^2\ge\left(a+b+c\right)^2\)
Nên ta chỉ cần chứng minh:
\(3+\dfrac{1}{a+b+c}\ge\dfrac{16}{a+b+c+3}\)
Thật vậy, ta có:
\(3+\dfrac{1}{a+b+c}=\dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{a+b+c}\ge\dfrac{16}{1+1+1+a+b+c}=\dfrac{16}{a+b+c+3}\) (đpcm)
Dấu "=" xảy ra khi \(a=\dfrac{b}{2}=c=\dfrac{1}{4}\)
3.
\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)
\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)
Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)
\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)
\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)
ta có:
\(\left(b-c\right)^2\ge0\Leftrightarrow b^2+4bc+4c^2\le3b^2+6c^2\Leftrightarrow\left(b+2c\right)^2\le3b^2+6c^2\)
\(\Leftrightarrow\frac{\left(b+2c\right)^2}{3b^2+6c^2}\le1\Leftrightarrow\frac{b+2c}{\sqrt{3b^2+6c^2}}\le1\Leftrightarrow\frac{a\left(b+2c\right)}{\sqrt{3b^2+6c^2}}\le a\)
cmtt =>\(\frac{a\left(b+2c\right)}{\sqrt{3b^2+6c^2}}+\frac{b\left(c+2a\right)}{\sqrt{3c^2+6a^2}}+\frac{c\left(a+2b\right)}{\sqrt{3a^2+6b^2}}\le a+b+c\left(Q.E.D\right)\)
dấu = xảy ra khi a=b=c
Áp dụng BĐT Cauchy - Schwarz ta có :
\(VT=\frac{1}{\sqrt{a}}+\frac{3}{\sqrt{b}}+\frac{8}{\sqrt{3c+2a}}\)
\(=\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{2}{\sqrt{b}}+\frac{8}{\sqrt{3c+2a}}\)
\(\ge\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{2\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)
\(=\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}+\frac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)
\(\ge\frac{\left(1+2+1+2+2\right)^2}{2\sqrt{3c+2a}+3\sqrt{b}+\sqrt{a}}\)
\(\ge\frac{64}{\sqrt{\left(1+2^2+3\right)\left(a+2a+3c+3b\right)}}\)
\(=\frac{64}{\sqrt{24\left(a+c+b\right)}}=\frac{16\sqrt{2}}{\sqrt{3\left(a+b+c\right)}}=VF\)
Chúc bạn học tốt !!!
bài này mình cũng dò lại đề rồi mình chép đúng đấy mà không làm được nên mới nhờ giải
Sai đề ở vế phải. Cái này tôi làm rồi nên biết: 819598 (học 24)
BDT cần cm tương đương
\(\frac{\left(2+6a+3b+6\sqrt{2bc}\right)\left(\sqrt{2b^2+2\left(a+c\right)^2}+3\right)}{2a+b+2\sqrt{2bc}}\ge16\)
Áp dụng bdt C-S và AM-GM:
\(VT=\frac{\left(2+6a+3b+6\sqrt{2bc}\right)\left(\sqrt{2b^2+2\left(a+c\right)^2}+3\right)}{2a+b+2\sqrt{2bc}}\)
\(=\left(\frac{2}{2a+b+2\sqrt{2bc}}+3\right)\left(\sqrt{2\left(b^2+\left(a+c\right)^2\right)}+3\right)\)
\(\ge\left(\sqrt{2\cdot\frac{\left(a+b+c\right)^2}{2}}+3\right)\left(\frac{2}{2a+b+b+2c}+3\right)\)
\(=\left(a+b+c+3\right)\left(\frac{1}{a+b+c}+3\right)\)
\(\ge\left(3+1\right)^2=16=VP\)
dau '=' khi a+b+c=1, b=a+c, 2c=b bn tự giải not
Chuyên toán Vĩnh Phúc đây mà :) Em chụp lại nha,chớ e mà viết ra nhiều người nhảy vào cà khịa ghê lắm:(