\(\dfrac{2+6a+3b+6\sqrt{2bc}}{2a+b+2\sqrt{2bc}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 8 2021

\(\Leftrightarrow\dfrac{2+3\left(2a+b+2\sqrt{2bc}\right)}{2a+b+2\sqrt{2bc}}\ge\dfrac{16}{\sqrt{2b^2+2\left(a+c\right)^2}+3}\)

\(\Leftrightarrow3+\dfrac{2}{2a+b+2\sqrt{2bc}}\ge\dfrac{16}{\sqrt{2b^2+2\left(a+c\right)^2}+3}\)

Do \(\dfrac{2}{2a+b+2\sqrt{2bc}}\ge\dfrac{2}{2a+b+b+2c}=\dfrac{1}{a+b+c}\)

Và \(2b^2+2\left(a+c\right)^2\ge\left(a+b+c\right)^2\)

Nên ta chỉ cần chứng minh:

\(3+\dfrac{1}{a+b+c}\ge\dfrac{16}{a+b+c+3}\)

Thật vậy, ta có:

\(3+\dfrac{1}{a+b+c}=\dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{a+b+c}\ge\dfrac{16}{1+1+1+a+b+c}=\dfrac{16}{a+b+c+3}\) (đpcm)

Dấu "=" xảy ra khi \(a=\dfrac{b}{2}=c=\dfrac{1}{4}\)

6 tháng 6 2019

\(\frac{\left(2+6a+3b+6\sqrt{2bc}\right)\left(\sqrt{2b^2+2\left(a+c\right)^2}+3\right)}{2a+b+2\sqrt{2bc}}\ge16\)

Ap dung bdt amgm va bdt bunhiacpoxki taok:

\(VT=\frac{\left(2+6a+3b+6\sqrt{2bc}\right)\left(\sqrt{2b^2+2\left(a+c\right)^2}+3\right)}{2a+b+2\sqrt{2bc}}\)

\(=\left(\sqrt{2\left(b^2+\left(a+c\right)^2\right)}+3\right)\left(\frac{2}{2a+b+2\sqrt{2bc}}+3\right)\)

\(\ge\left(\sqrt{2\cdot\frac{\left(a+b+c\right)^2}{2}}+3\right)\left(\frac{2}{2a+b+b+2c}+3\right)\)

\(=\left(a+b+c+3\right)\left(\frac{1}{a+b+c}+3\right)\)

\(\ge\left(1+3\right)^2=16=VP\)

6 tháng 6 2019

dau = khi a+b+c=1;b=a+c;2c=b;a>0;b>0;c>0 tu giai tiep ra

12 tháng 1 2020

Sai đề ở vế phải. Cái này tôi làm rồi nên biết:  819598 (học 24)

BDT cần cm tương đương

\(\frac{\left(2+6a+3b+6\sqrt{2bc}\right)\left(\sqrt{2b^2+2\left(a+c\right)^2}+3\right)}{2a+b+2\sqrt{2bc}}\ge16\)

Áp dụng bdt C-S và AM-GM:

\(VT=\frac{\left(2+6a+3b+6\sqrt{2bc}\right)\left(\sqrt{2b^2+2\left(a+c\right)^2}+3\right)}{2a+b+2\sqrt{2bc}}\)

\(=\left(\frac{2}{2a+b+2\sqrt{2bc}}+3\right)\left(\sqrt{2\left(b^2+\left(a+c\right)^2\right)}+3\right)\)

\(\ge\left(\sqrt{2\cdot\frac{\left(a+b+c\right)^2}{2}}+3\right)\left(\frac{2}{2a+b+b+2c}+3\right)\)

\(=\left(a+b+c+3\right)\left(\frac{1}{a+b+c}+3\right)\)

\(\ge\left(3+1\right)^2=16=VP\)

dau '=' khi a+b+c=1, b=a+c, 2c=b bn tự giải not

13 tháng 1 2020

Chuyên toán Vĩnh Phúc đây mà :) Em chụp lại nha,chớ e mà viết ra nhiều người nhảy vào cà khịa ghê lắm:(

1HB87V3.png

30 tháng 5 2018

Ta có :\(\dfrac{1}{\sqrt{5a^2+2ab+2b^2}}=\dfrac{1}{\sqrt{\left(4a^2+4ab+b^2\right)+\left(a^2-2ab+b^2\right)}}\)

\(=\dfrac{1}{\sqrt{\left(2a+b\right)^2+\left(a-b\right)^2}}\le\dfrac{1}{\sqrt{\left(2a+b\right)^2}}=\dfrac{1}{2a+b}\le\dfrac{1}{9}\left(\dfrac{2}{a}+\dfrac{1}{b}\right)\) (Cosi)

Tương tự cộng lại ta được :

\(P\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)=\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{1}{3}\sqrt{3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)}=\dfrac{1}{\sqrt{3}}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\sqrt{3}\)

30 tháng 5 2018

\(\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)\(\le\) \(\dfrac{1}{3}\sqrt{3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)}\) làm thế nào hả bn ?

24 tháng 12 2018

bai nay t lam roi vao trang chu cua nick thangbnsh cua t keo xuong tim la thay

24 tháng 12 2018

Câu hỏi của Tuyển Trần Thị - Toán lớp 9 | Học trực tuyến

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

1. Ta thấy:

\(\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}=\frac{(\sqrt{a}-\sqrt{b})^3(\sqrt{a}+\sqrt{b})^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}\)

\(=(\sqrt{a}+\sqrt{b})^3-b\sqrt{b}+2a\sqrt{a}=a\sqrt{a}+b\sqrt{b}+3\sqrt{ab}(\sqrt{a}+\sqrt{b})-b\sqrt{b}+2a\sqrt{a}\)

\(=3a\sqrt{a}+3\sqrt{ab}(\sqrt{a}+\sqrt{b})=3\sqrt{a}(a+\sqrt{ab}+b)\)

$a\sqrt{a}-b\sqrt{b}=(\sqrt{a}-\sqrt{b})(a+\sqrt{ab}+b)$

\(\frac{\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}=\frac{3\sqrt{a}}{\sqrt{a}-\sqrt{b}}(1)\)

\(\frac{3a+3\sqrt{ab}}{b-a}=\frac{3\sqrt{a}(\sqrt{a}+\sqrt{b})}{(\sqrt{b}-\sqrt{a})(\sqrt{b}+\sqrt{a})}=\frac{-3\sqrt{a}}{\sqrt{a}-\sqrt{b}}(2)\)

Từ $(1);(2)$ ta có đpcm.

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

Câu 2:

Điều kiện đã cho tương đương với:

$\frac{a-b}{a(a+b)}+\frac{a+b}{a(a-b)}=\frac{3a-b}{(a-b)(a+b)}$

$\Leftrightarrow \frac{(a-b)^2}{a(a+b)(a-b)}+\frac{(a+b)^2}{a(a-b)(a+b)}=\frac{a(3a-b)}{a(a-b)(a+b)}$

$\Leftrightarrow (a-b)^2+(a+b)^2=a(3a-b)$

$\Leftrightarrow 2a^2+2b^2=3a^2-ab$

$\Leftrightarrow a^2-ab-2b^2=0$

$\Leftrightarrow (a+b)(a-2b)=0$

$\Leftrightarrow a=-b$ hoặc $a=2b$

Nếu $a=-b$ thì $|a|=|b|$ (trái giả thiết). Do đó $a=2b$

Khi đó:

$P=\frac{(2b)^3+2(2b)^2.b+3b^3}{2(2b)^3+2b.b^2+b^3}=\frac{19b^3}{19b^3}=1$

NV
4 tháng 3 2019

\(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\dfrac{1}{\sqrt{5a^2+2ab+2b^2}}\le\dfrac{1}{\sqrt{\left(2a+b\right)^2}}=\dfrac{1}{a+a+b}\le\dfrac{1}{9}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}\right)\)

Tương tự ta có: \(\dfrac{1}{\sqrt{5b^2+2bc+2c^2}}\le\dfrac{1}{9}\left(\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\right)\)

Cộng vế với vế:

\(\dfrac{1}{\sqrt{5a^2+2ab+b^2}}+\dfrac{1}{\sqrt{5b^2+2bc+c^2}}+\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)\le\dfrac{2}{3}\)

Dấu "=" khi \(a=b=c=\dfrac{3}{2}\)