Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu: a2 + b2 + c2 - ab - ac - bc
<=> 2(a2 + b2 + c2 - ab - ac - bc)
<=> a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ac + a2
<=> (a - b)2 + (b - c)2 + (c - a)2 >= 0
Dấu "=" xảy ra <=> a = b = c mà abc = 1 => a=b=c=1 => a^3 = 1
mà a^3 > 36 (mâu thuẫn)
=> a2 + b2 + c2 - ab - ac - bc > 0
<=> a2 + b2 + c2 > ab + ac + bc
P/S: mk mới nghĩ ra cách này thôi, bn đọc tham khảo
Có : (a-b)^2 >= 0
<=> a^2+b^2 >= 2ab
Tương tự : b^2+c^2 >= 2bc
c^2+a^2 >= 2ca
=> 2.(a^2+b^2+c^2) >= 2.(ab+bc+ca)
<=> a^2+b^2+c^2 >= ab+bc+ca
Dấu "=" xảy ra <=> a=b=c và abc = 1 <=> a=b=c=1 <=> a^3 = 1 < 36 ( mâu thuẫn đề cho )
=> a^2+b^2+c^2 > ab+bc+ca
Tk mk nha
\(BĐT\Leftrightarrow\frac{a^3}{3}+\left(b+c\right)^2-3bc-a\left(b+c\right)\ge0\)
\(\Leftrightarrow\frac{a^2}{4}+\left(b+c\right)^2-a\left(b+c\right)+\frac{a^2}{12}-3bc\ge0\)
\(\Leftrightarrow\left(\frac{a}{2-b-c}\right)^2+\frac{a^2}{12}-\frac{3}{a}\ge0\)
\(\Leftrightarrow\left(\frac{a}{2-b-c}\right)^2+\frac{\left(a^3-36\right)}{12a}\ge0\)
Ta có: \(\left(\frac{a}{2-b-c}\right)\ge0\)
\(a^3-36\ge0\)
\(a\ge ab+bc+ac\left(ĐPCM\right)\)