Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ a = 2100 = (24)25 = 1625
b = 375 = (33)25 = 2725
c = 550 = (52)25 = 2525
Do: 16 < 25 < 27 => 1625 < 2525 < 2725 => 2100 < 550 < 375 => a < c < b
cho 3 số a, b, c hác 0 thỏa mãn ab/ (a+b) = bc/ (b+c) = ca/ (c+a)
Tính M = ab + bc + ca/ a2 + b2 + c2
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính M = ab + bc + ca/ a2 + b2 + c2
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}\)
\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}=\frac{1}{c}\\\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\Rightarrow\frac{1}{b}=\frac{1}{a}\\\frac{1}{a}+\frac{1}{c}=\frac{1}{b}+\frac{1}{a}=\frac{1}{c}=\frac{1}{a}\end{cases}}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
\(\Rightarrow M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{1.1+1.1+1.1}{1^2+1^2+1^2}=\frac{3}{3}=1\)
Ta có \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Mà \(a,b,c \ne0\) => \(ab,bc,ca \ne0\)
=> \(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
=> \(\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}\)
=> \(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
=> \(a=b=c\)
Thay vào M ta có : \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a.a+a.a+a.a}{a^2+a^2+a^2}=\frac{3a^2}{3a^2}=1\)
Vậy \(M=1\)
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{a+c}\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ac}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\Rightarrow M=1\)
Ta có \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Leftrightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
Từ \(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}\Rightarrow\frac{1}{a}=\frac{1}{c}\)
Tương tự suy ra \(\frac{1}{c}=\frac{1}{b};\frac{1}{b}=\frac{1}{a}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Ta có \(ab^2+bc^2+ca^2=a^3+b^3+c^3\)(đccm)
\(\text{Một cách khác}\)
\(\text{Ta có:}\)
\(\frac{ab}{a+b}=\frac{bc}{b+c}\)
\(\Leftrightarrow ab\left(b+c\right)=bc\left(a+b\right)\)
\(\Leftrightarrow ab^2+abc=abc+b^2c\)
\(\Leftrightarrow a=c\left(1\right)\)
\(\frac{bc}{b+c}=\frac{ca}{a+c}\)
\(\Rightarrow bc\left(a+c\right)=ca\left(b+c\right)\)
\(\Rightarrow abc+bc^2=abc+c^2a\)
\(\Rightarrow b=a\left(2\right)\)
\(Từ\)\(\text{(1) và (2)}\)\(\Rightarrow a=b=c\)
\(\text{Ta có :}\)\(ab^2+bc^2+ca^2=a^3+b^3+c^3\)