K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 1 2019

\(P=\dfrac{\left(\sqrt{a+1}+1\right)\left(\sqrt{a+1}+2\right)}{\left(\sqrt{a+1}-2\right)\left(\sqrt{a+1}+2\right)}+\dfrac{2\sqrt{a+1}\left(\sqrt{a+1}-2\right)}{\left(\sqrt{a+1}-2\right)\left(\sqrt{a+1}+2\right)}-\dfrac{2+5\sqrt{a+1}}{a-3}\)

\(P=\dfrac{a+3+3\sqrt{a+1}}{a-3}+\dfrac{2a+2-4\sqrt{a+1}}{a-3}-\dfrac{2+5\sqrt{a+1}}{a-3}\)

\(P=\dfrac{a+3+3\sqrt{a+1}+2a+2-4\sqrt{a+1}-2-5\sqrt{a+1}}{a-3}\)

\(P=\dfrac{3a+3-6\sqrt{a+1}}{a-3}\)

Có thể dừng ở đây hoặc nếu thích thì làm tiếp như sau (chưa chắc gọn hơn):

\(P=\dfrac{3\left(a+1\right)-6\sqrt{a+1}}{\left(\sqrt{a+1}-2\right)\left(\sqrt{a+1}+2\right)}=\dfrac{3\sqrt{a+1}\left(\sqrt{a+1}-2\right)}{\left(\sqrt{a+1}-2\right)\left(\sqrt{a+1}+2\right)}\)

\(P=\dfrac{3\sqrt{a+1}}{\sqrt{a+1}-2}\)

7 tháng 11 2017

\(X=\sqrt{a^2+1+\left(1-\frac{1}{a+1}\right)^2}+\frac{a}{a+1}\)

\(=\sqrt{a^2+1+\frac{a^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)

\(=\sqrt{\frac{\left(a^2+1\right)\left(a+1\right)^2+a^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)

\(=\sqrt{\frac{\left(a^2+a+1\right)^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)

\(=\frac{a^2+a+1}{a+1}+\frac{a}{a+1}=\frac{\left(a+1\right)^2}{a+1}=a+1\)

1 tháng 10 2017

Bất đẳng thức là cái j vậy các anh chụy?

NV
2 tháng 3 2019

a/ Ta có \(\dfrac{\left(a+b\right)^2}{4}\ge ab\Rightarrow\left(a+b\right)^2\ge4\Rightarrow a+b\ge2\)

\(\left(a+1\right)\left(b+1\right)=ab+\left(a+b\right)+1=a+b+2\ge2+2=4\) (đpcm)

Dấu "=" xảy ra khi \(a=b=1\)

b/ Áp dụng BĐT \(ab\le\dfrac{\left(a+b\right)^2}{4}\Rightarrow ab\le\dfrac{1}{4}\Rightarrow\dfrac{1}{ab}\ge4\)

Lại áp dụng BĐT: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\) cho 2 số dương ta được:\(\left(a+\dfrac{1}{b}\right)^2+\left(b+\dfrac{1}{a}\right)^2\ge\dfrac{1}{2}\left(a+b+\dfrac{1}{a}+\dfrac{1}{b}\right)^2=\dfrac{1}{2}\left(1+\dfrac{1}{ab}\right)^2\ge\dfrac{1}{2}\left(1+4\right)^2=\dfrac{25}{2}\)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)

9 tháng 11 2015

ta có (a+b+c ) 2   = a2+b2+c2+2(ab+bc+ac)

Mà  a2+b2+c>/ ab+bc+ac     ( Bạn tự CM: nhân 2 vế với 2 rồi chuyển vế dưa về HDT)

=>  (a+b+c ) 2   = 3(ab+bc+ac)   => \(a+b+c\ge3\frac{ab+bc+ca}{a+b+c}\)mà a+b+c=abc

\(a+b+c\ge3\frac{ab+bc+ca}{abc}\)

\(a+b+c\ge3.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)