Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a>b>0 => a-b>0=> (√a)^2-(√b)^2>0
=> (√a-√b).(√a+√b)>0
mà √a + √b >0
=> bạn ngu
Mình theo một số nguồn trên Internet thì đề đúng là : \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}.\)
Ta có :
\(a^2+b^2+c^2-2bc-2ca+2ab\)
\(=\left(a+b-c\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2-2bc-2ca+2ab\ge0\)
\(\Rightarrow a^2+b^2+c^2\ge2bc+2ca-2ab\)
Dấu bằng xảy ra khi \(a+b=c\)
Mà \(\frac{5}{3}< \frac{6}{3}=2\)
\(\Rightarrow a^2+b^2+c^2< 2\)
\(\Rightarrow2bc+2ac-2ab\le a^2+b^2+c^2< 2\)
\(\Rightarrow2bc+2ac-2ab< 2\)
Do a ; b ; c > 0
\(\Rightarrow\frac{2bc+2ac-2ab}{2abc}< \frac{2}{2abc}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
Vậy ...
Giả sử \(1+a\ge b+c\)
Ta có \(1+a^3=b^3+c^3\)
\(\Leftrightarrow\left(1+a\right)\left(a^2-a+1\right)=\left(b+c\right)\left(b^2-bc+c^2\right)\)
\(\Leftrightarrow\frac{a^2-a+1}{b^2-bc+c^2}=\frac{b+c}{1+a}\le1\)
\(\Rightarrow a^2-a+1\le b^2-bc+c^2\)
\(\Leftrightarrow\left(a+1\right)^2-3a\le\left(b+c\right)^2-3bc\)(Vô lí vì giả sử a+1 > b+c và giả thiết a<bc)
Vậy điều giả sử là sai nên ta có dpcm
\(a+b\ge2\sqrt{ab},b+c\ge2\sqrt{bc},c+d\ge2\sqrt{cd},d+e\ge2\sqrt{de},\)
\(e+f\ge2\sqrt{ef},f+a\ge2\sqrt{fa}\)
Suy ra \(\left(a+b\right)\left(b+c\right)\left(c+d\right)\left(d+e\right)\left(e+f\right)\left(f+a\right)\ge2^6\sqrt{a^2b^2c^2d^2e^2f^2}=64\).
Dấu \(=\)xảy ra khi \(a=b=c=d=e=f=1\).