K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2018

Số thứ nhất là n, số thứ 2 là n + 1, ƯC ( n, n+ 1)= a

Ta có : n chia hết cho a (1)

          n + 1 chia hết cho a (2)

Từ (1) và (2) ta được :

n+ 1 - n chia hết cho a

=> 1 chia hết cho a

=> a = 1

=> ƯC ( n, n+1) = 1

=> n và n + 1 là hai số nguyên tố cùng nhau.

Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.

cảm ơn

13 tháng 8 2015

a.

ọi số thứ nhất là x, số thứ 2 là x + 1 

Có x . (x +1) = 111222 

<=> x² + x = 111222 

Cộng cả 2 vế với 1/4, ta có 

x² + x + 1/4 = 111222,25 

<=> x² + 2 . 1/2.x + (1/2)² = 111222,25 (xuất hiện hằng đẳng thức) 

<=> (x + 1/2)² = 111222,25 

<=> x + 1/2 = 333,5 

<=> x = 333 

Vậy số thứ nhất là 333, số thứ 2 là 334. Tích 2 số này bằng 111222

Còn lại mỏi tay quá

 

13 tháng 9 2018

Bạn xem lời giải của bạn Đức Nhật Huỳnh ở đường link dưới nhé:

Câu hỏi của Nguyễn Thị Thảo Ly - Toán lớp 6 - Học toán với OnlineMath

12 tháng 8 2021

B = 2^2023 chứ nhỉ

A = 2^0 + 2^1 + 2^2 + ... + 2^2022

2A = 2^1 + 2^2 + 2^3 + ... + 2^2023

=> 2A - A = (2^1 + 2^2 + ... + 2^2023) - (2^0 + 2^1 + 2^2 + ... + 2^2021)

=> A = 2^2023 - 2^0

=> A = 2^2023 - 1

=> A và B là 2 stn liên tiếp

12 tháng 8 2021

Ta có:

A=20+21+22+...+22020+22021A=20+21+22+...+22020+22021

⇔2A=21+22+23+...+22021+22022⇔2A=21+22+23+...+22021+22022

⇔2A−A=(21+22+23+...+22021+22022)−(20+21+22+...+22020+22021)⇔2A−A=(21+22+23+...+22021+22022)−(20+21+22+...+22020+22021)

⇔A=22022−20⇔A=22022−20

⇔A=22022−1⇔A=22022−1

Mà B=22022⇒B=A+1B=22022⇒B=A+1

⇒A⇒A và BB là 22 số tự nhiên liên tiếp. 

    chúc học tốt.

23 tháng 8 2016

\(2A=2^1+2^2+2^3+2^4+...+2^{2010}.\)

\(A=2A-A=2^{2010}-2^0=2^{2010}-1\)

=> A và B là 2 số tự nhiên liên tiếp

23 tháng 8 2016

Ta có: A=1+2+22+...+22009

=>2A=2+22+23+....+22010

=>2A-A=A=(2+22+23+...+22010)-(1+2+22+...+22009)

=>A=22010-1

=>A và B là 2 số tự nhiên liên tiếp (đpcm)

15 tháng 8 2023

\(A=1+2+2^2+2^3+...+2^{2022}\)

\(2A=2+2^2+2^3+...+2^{2023}\)

\(2A-A=\left(2-2\right)+\left(2^2-2^2\right)+...+\left(2^{2023}-1\right)\)

\(A=2^{2023}-1\)

Mà: \(2^{2023}-1\) và \(2^{2023}\) 

Là hai số tự nhiên liên tiếp nên:

A và B là hai số tự nhiện liên tiếp

15 tháng 8 2023

làm giống phong ấy

16 tháng 9 2016

Hình như đây là 1 bài toán lớp 7. Bạn có thể giải theo cách đặt ẩn theo những bạn đã làm ở trên nhưng hình như lớp 7 chưa có đặt ẩn thì phải. 
Mình sẽ chỉ bạn phương pháp giải chi tiết theo cách lớp 7 như sau: 
1) Dự đoán kết quả (tính trong đầu): 
Dạng bài phân tích số, đa thức hay tính giá trị biểu thức thật ra là chứng minh đẳng thức A = B và 1 vế B đã bị giấu đi. Nếu biết cụ thể 2 vế thì chứng minh dễ hơn nhiều. 
Bấm máy tính, ta có: 
12 = 3.4 
1122 = 33.34 
111222 = 333.334 
11112222 = 3333.3334 
.... 
Có lẽ bạn đã nhận ra quy luật rồi, vậy bắt đầu chứng minh: 
Ta có: 111222 = 111000 + 222 = 111.1000 + 111.2 = 111(1000 + 2) = 111(999 + 3) = 111.3(333 + 1) 
=333.334 (đpcm) 
Đơn giản vậy thôi nếu biết trước kết quả, đây là 1 phương pháp bổ ích bạn nên tận dụng^

13 tháng 9 2018

Bạn xem lời giải của bạn Đức Nhật Huỳnh ở đường link dưới nhé:

Câu hỏi của Nguyễn Thị Thảo Ly - Toán lớp 6 - Học toán với OnlineMath

10 tháng 9 2015

a la Dạng bài phân tích số, đa thức hay tính giá trị biểu thức thật ra là chứng minh đẳng thức A = B và 1 vế B đã bị giấu đi. Nếu biết cụ thể 2 vế thì chứng minh dễ hơn nhiều. 
Bấm máy tính, ta có: 
12 = 3.4 
1122 = 33.34 
111222 = 333.334 
11112222 = 3333.3334 
.... 
Có lẽ bạn đã nhận ra quy luật rồi, vậy bắt đầu chứng minh: 
Ta có: 111222 = 111000 + 222 = 111.1000 + 111.2 = 111(1000 + 2) = 111(999 + 3) = 111.3(333 + 1) 
=333.334 (đpcm) 

28 tháng 6 2017

BÀI 2:

b, 4 5 8 4 5 8 4 5 8

NM
21 tháng 12 2020

ta có 

\(2A=2+2^2+..+2^{2019}=\left(1+2+2^2..+2^{2018}\right)+2^{2019}-1\)

hay \(2A=A+2^{2019}-1\Leftrightarrow A=2^{2019}-1\)

vì vậy A và B là hai số tự nhiên liên tiếp

18 tháng 12 2016

Ta có:
\(A=1+2+2^2+...+2^{2013}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{2014}\)

\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2014}\right)-\left(1+2+2^2+...+2^{2013}\right)\)

\(\Rightarrow A=2^{2014}-1\)

\(2^{2014}\)\(2^{2014}-1\) hơn kém nhau 1 đơn vị nên \(2^{2014}-1\)\(2^{2014}\) là 2 số tự nhiên liên tiếp.

\(\Rightarrow A,B\) là 2 số tự nhiên liên tiếp

\(\Rightarrowđpcm\)