Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{105}+\frac{1}{120}\)
\(M=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+...+\frac{2}{210}+\frac{2}{240}\)
\(M=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+...+\frac{2}{14.15}+\frac{2}{15.16}\)
\(M=\frac{2}{4}-\frac{2}{5}+\frac{2}{5}-\frac{2}{6}+\frac{2}{6}-\frac{2}{7}+\frac{2}{7}-\frac{2}{8}+...+\frac{2}{15}-\frac{2}{16}\)
\(M=\frac{2}{4}-\frac{2}{16}=\frac{3}{8}\)
Vì \(\frac{3}{9}< \frac{3}{8}< \frac{4}{8}\)nên \(\frac{1}{3}< M< \frac{1}{2}\)
Vậy \(\frac{1}{3}< M< \frac{1}{2}\)
P/S : Đừng nói như lần trước nhé!
\(M=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{105}+\dfrac{1}{120}\)
\(M=2.\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{240}\right)\)
\(M=2.\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{15.16}\right)\)
\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)
\(M=2.\dfrac{3}{16}\)
\(M=\dfrac{3}{8}\)
Vậy \(\dfrac{1}{3}< M< \dfrac{1}{2}\)
C=3-1+4-1+5-1+....+102-1+103-1
C=2+3+4+5+...+101+102
Tổng đã cho có: (102-2):1+1=101 (số hạng)
C=(102+2)*101:2=5252
Vậy 5252 là tổng của tập hợp C.
C = 3 - 1 + 4 - 1 + 5 - 1 + .... + 102 - 1 + 103 - 1
= 2 + 3 + 4 + ... + 101 + 102
Số số hạng là : (102 - 2) : 1 + 1 = 100 (số hạng)
Tổng : (102 + 2) . 100 : 2 = 5200
Vậy C = 5200
Ta có:
\(A=\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+...+\frac{6}{87.90}\)
\(A=2.\left(\frac{3}{15.18}+\frac{3}{18.21}+\frac{3}{21.24}+...+\frac{3}{87.90}\right)\)
\(A=2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+...+\frac{1}{87}-\frac{1}{90}\right)\)
\(A=2.\left(\frac{1}{15}-\frac{1}{90}\right)\)
\(A=2.\frac{1}{18}=\frac{1}{9}\)
\(A=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{19.21}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{19}-\frac{1}{21}\)
\(=\frac{1}{3}-\frac{1}{21}\)
\(=\frac{6}{21}\)
nhớ giải chi tiết
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+....+\frac{1}{105}+\frac{1}{210}\)
=> \(\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+.....+\frac{1}{210}+\frac{1}{240}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+.....+\frac{1}{14.15}+\frac{1}{15.16}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{!}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{16}\)
\(=\frac{1}{2}-\frac{1}{16}=\frac{7}{16}\)
=> \(A=\frac{7}{8}\)