K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

nhiều quá vậy ?

19 tháng 2 2017

Gọi A là biểu thức ta có: 
CÂU1 :A = 1.2+2.3+3.4+......+99.100 
          3A = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3 
          3A = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98) 
          3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100 
          3A = 99.100.101 
          A = 99.100.101 : 3 
          A = 33.100.101 
          A = 333 300

13 tháng 11 2016

tham the 

14 tháng 11 2016

có giỏi thì làm một câu xem nào

10 tháng 9 2019

Ngu như con bò

10 tháng 9 2019

vay sao chi

11 tháng 2 2019

J=6 + 16 + 30 + 48 +...+ 19600 + 19998

Chia cả 2 vế cho 2 ta được

B/2 = 3 + 8 + 15 + 24 +  ......... + 98000+ 9999

B/2= 1x3+2x4+3x5+4x6+…….+98x100+99x101

B/2= 100/6[(100-1)x(2x100+1)] = 328350

-> B =328350x2=656700

K=2 + 5 + 9 + 14 + ....+ 4949 + 5049

Nhân cả 2 vế với 2 ta được

2xD=1x4+    2x5+ 3x6+   4x7+……..+98x101+99x102

2xD = 1(2+2)+2(3+2)+3(4+2)+...+99(100+2)

2xD = 1x2+1x2+2x3+2x2+3x4+3x2+...+99x100+99x2

2xD= (1x2+2x3+3x4+...+99x100)+2(1+2+3+...+99)

2xD =           333300       +                      9900        =      343200

 -> D= 343200 :2 =171600

16 tháng 1 2020

                                                      Bài giải

\(B=1\cdot2^2+2\cdot3^2+3\cdot4^2+...+99\cdot100^2\)

\(B=1\cdot2\cdot\left(3-1\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-1\right)+...+99\cdot100\cdot\left(101-1\right)\)

\(B=1\cdot2\cdot3-1\cdot2+2\cdot3\cdot4-2\cdot3+...+99\cdot100\cdot101-99\cdot100\)

\(B=\left(1\cdot2\cdot3+2\cdot3\cdot4+...+99\cdot100\cdot101\right)-\left(1\cdot2+2\cdot3+...+99\cdot100\right)\)

Đặt \(C=1\cdot2\cdot3+2\cdot3\cdot4+...+99\cdot100\cdot101\)

\(4C=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot\left(5-1\right)+...+99\cdot100\cdot101\cdot\left(102-98\right)\)

\(4C=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+...+99\cdot100\cdot101\cdot102-98\cdot99\cdot100\cdot101\)

\(4C=99\cdot100\cdot101\cdot102\)

\(4C=101989800\)

\(C=101989800\text{ : }4\)

\(C=25497450\)

16 tháng 1 2020

Bạn vào câu hỏi tương tự tham khảo nha !

A=4+12+24+40+...+19404+19800

1/2A=2+6+12+...+9702+9900

1/2A=1.2+2.3+3.4+...+98.99+99.100

3/2A=1.2,3+2.3.(4-1)+3.4.(5-2)+...+98.99.(100-97)+99.100.(101-98)

3/2A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.99+99.100.101-98.99.100

3/2A=99.100.101

A=(99.100.101):3/2=666600

B= 1+3+6+10+....+4851+4950

2B = 2+6+12+20+...+9702+9900
2B = 1.2+2.3+3.4+4.5+...+98.99+99.100
Xét A = 1.2+2.3+3.4+4.5+...+98.99+99.100
3A = 1.2.3+2.3(4-1)+3.4(5-2)+....+99.100(101-98)
3A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+99.100.101-98.99.100
3A = 99.100.101
B = 333300
Thay A vào B ta được:
2B = 333300
B = 166650
MK chỉ làm được đến đây thôi

27 tháng 10 2020

Đấy là câu thứ nhất ?

24 tháng 11 2016

Tính giá trị của A, biết:

A = 1.3+2.4+3.5+...+99.101

Bài làm :

 

Thay thừa số 3, 4, 5, 6.....101 bắng (2+1), (3+1), (4+1).....(100 +1)

Ta có

A = 1(2+1)+2(3+1)+3(4+1)+...+99(100+1)

A = 1.2+1+2.3+2+3.4+3+...+99.100+99

A = (1.2+2.3+3.4+...+99.100)+(1+2+3+...+99)

A = 333300 + 4950 = 338250

Dãy đầu áp dụng công thức [*2] , Dãy sau công thức [*1]

Tính: A = 1.4+2.5+3.6+...+99.102 = ?

 

Bài làm:

 

Thay thừa số 3, 4, 5, 6.....101 bắng (2+1), (3+1), (4+1).....(100 +1)

Ta có

A = 1(2+1)+2(3+1)+3(4+1)+...+99(100+1)

A = 1.2+1+2.3+2+3.4+3+...+99.100+99

A = (1.2+2.3+3.4+...+99.100)+(1+2+3+...+99)

A = 333300 + 4950 = 338250

Dãy đầu áp dụng công thức [*2] , Dãy sau công thức [*1]

Tính tổng các bình phương của 100 số tự nhiê n đầu tiên

A = 12 +22 +32+...+992 +1002

Bài làm :

 

thay thừa số 3, 4, 5, 6.....101 bắng (2+1), (3+1), (4+1).....(100 +1)

Ta có

A = 1(2+1)+2(3+1)+3(4+1)+...+99(100+1)

A = 1.2+1+2.3+2+3.4+3+...+99.100+99

A = (1.2+2.3+3.4+...+99.100)+(1+2+3+...+99)

A = 333300 + 4950 = 338250

Dãy đầu áp dụng công thức [*2] , Dãy sau công thức [*1]

 

31 tháng 7 2018

a)1.22 + 2.32 + 3.42 + ... + 99.1002

= 1.2(3 - 1) + 2.3(4 - 1) + 3.4(5 - 1) + ... + 99.100(101 - 1)

= 1.2.3 - 1.2 + 2.3.4 - 2.3 + 3.4.5 - 3.4 + ... + 99.100.101 - 99.100

= (1.2.3 + 2.3.4 + 3.4.5 + ... + 99.100.101) - (1.2 + 2.3 + 3.4 + ... + 99.100)