Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=1/22+1/32+...+1/1002.Ta có:
A>1/2.3+1/3.4+...+1/100.101=1/2-1/101=99/202
A< 1/1.2+1/2.3+...+1/99.100=1-1/100=99/100
A=\(\frac{n\left(n+1\right)}{2}\)
F=\(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Từ 1-> n có: (n-1)+1=n (số hạng)
=>\(A=1+2+3+...+n=\frac{\left(n+1\right).n}{2}\)
Ta có:
\(A=1+2+2^2+...+2^{2013}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2014}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2014}\right)-\left(1+2+2^2+...+2^{2013}\right)\)
\(\Rightarrow A=2^{2014}-1\)
Vì \(2^{2014}\) và \(2^{2014}-1\) hơn kém nhau 1 đơn vị nên \(2^{2014}-1\) và \(2^{2014}\) là 2 số tự nhiên liên tiếp.
\(\Rightarrow A,B\) là 2 số tự nhiên liên tiếp
\(\Rightarrowđpcm\)
Đây bạn
Viết lại bài toán cần chứng minh
13+23+33+..n3=(1+2+3+...+n)213+23+33+..n3=(1+2+3+...+n)2
Với n=1;n=2n=1;n=2 thì đẳng thức hiển nhiên đúng, hay chính là câu a,b đó
Giả sử đẳng thức đúng với n=kn=k
Tức 13+23+33+...k3=(1+2+3+4..+k)213+23+33+...k3=(1+2+3+4..+k)2
Ta sẽ chứng minh nó đúng với n=k+1n=k+1
Viết lại đẳng thức cần chứng minh 13+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)213+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)2 (*)
Mặt khác ta có công thức tính tổng sau 1+2+3+4+...+n=n(n+1)21+2+3+4+...+n=n(n+1)2
⇒(1+2+3+4+...+n)2=(n2+n)24⇒(1+2+3+4+...+n)2=(n2+n)24
Vậy viết lại đẳng thức cần chứng minh
(k2+k)24+(k+1)3=(k2+3k+2)24(k2+k)24+(k+1)3=(k2+3k+2)24
⇔(k2+3k+2)2−(k2+k)2=4(k+1)3⇔(k2+3k+2)2−(k2+k)2=4(k+1)3
Bằng biện pháp "nhân tung tóe", đẳng thức cần chứng minh tuơng đuơng
⇔4k3+12k2+12k+4=4(k+1)3⇔4k3+12k2+12k+4=4(k+1)3
⇔4(k+1)3=4(k+1)3⇔4(k+1)3=4(k+1)3 ~ Đẳng thức này đúng.
Vậy theo nguyên lý quy nạp ta có đpcm.
Giải hẳn hoi nha các bạn, đừng có viết luôn dạng tổng quát, nha
Ta có: \(A=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(\Rightarrow A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)
\(\Rightarrow A=2.7+2^4.7+...+2^{98}.7\)
\(\Rightarrow A=\left(2+2^4+...+2^{98}\right).7⋮7\)
\(\Rightarrow A⋮7\)
\(3^{x-1}=\frac{1}{243}\)
\(\Rightarrow3^x=243\)
\(\Rightarrow3^x=3^5\)
\(\Rightarrow x=5\)
Ta có A =1.2 + 2.3 + 3.4 + ...+ 98.99
B = 1^2 + 2^2 + 3^2 +...+98^2 = 1.1+2.2+3.3+...+98.98
Suy ra: A-B= (1.2 + 2.3 + 3.4 + ...+ 98.99) - (1.1+2.2+3.3+...+98.98)
= (1.2-1.1) + (2.3-2.2) + (3.4-3.3) +...+ (98.99-98.98)
= 1(2-1) + 2(3-2) + 3(4-3) +...+ 98(99-98)
= 1.1 + 2.1 + 3.1 +...+ 98.1
= 1+ 2+ 3+...+ 98 = [98.(98+1)]/2= 98.99/2 = 4851
Chúc bạn học tốt!
Ta có:A=1/21+1/22+1/23+...+1/40(có 20 số hạng)
A>1/40+1/40+...+1/40
A>20/40=1/2(1)
A=1/21+1/22+1/23+...+1/40(có 20 số hạng)
A<1/20+1/20+1/20+...+1/20
A<20/20=1(2)
Từ (1) và (2)=>1/2<A<1
Ta có :A=1/2+1/2^2+1/2^3+...+1/2^100
2A=1+1/2+1/2^2+...+1/2^99
2A-A=(1+1/2+1/2^2+...+1/2^99)-(1/2+1/2^2+1/2^3+...+1/2^100)
A=1-1/2^100
Dễ thấy A>0 và 1-1/2^100<1
=>0<A<1