Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{N}{2}=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(\frac{N}{2}=N-\frac{N}{2}=\frac{1}{2}-\frac{1}{2^{100}}\Rightarrow N=1-\frac{1}{2^{99}}<1\)
Lời giải:
\(A=\frac{1}{2}+(\frac{1}{2})^2+(\frac{1}{2})^3+...+(\frac{1}{2})^{98}+(\frac{1}{2})^{99}\)
\(\Rightarrow 2A=1+\frac{1}{2}+(\frac{1}{2})^2+...+(\frac{1}{2})^{97}+(\frac{1}{2})^{98}\)
Trừ theo vế:
\(2A-A=1-(\frac{1}{2})^{99}\)
\(A=1-(\frac{1}{2})^{99}< 1\)
Ta có đpcm.
B = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(\Rightarrow\)3B = \(1+\frac{1}{3}+...+\frac{1}{3^{98}}\)
Lấy 3B - B = \(\left(1+\frac{1}{3}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)\)
2B = \(1-\frac{1}{3^{99}}\)
B = \(\left(1-\frac{1}{3^{99}}\right):2\)
= \(\left(1-\frac{1}{3^{99}}\right).\frac{1}{2}\)
= \(1.\frac{1}{2}-\frac{1}{3^{99}}.\frac{1}{2}\)
= \(\frac{1}{2}-\frac{1}{3^{99}.2}< \frac{1}{2}\)
\(\Rightarrow B< \frac{1}{2}\left(đpcm\right)\)
\(\frac{B}{2}=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(\frac{B}{2}=B-\frac{B}{2}=\frac{1}{2}-\frac{1}{2^{100}}< 1\)
vì 1/2+1/2 =1/2 bình nên A<1