K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2019

\(D=\frac{2\cdot8^9\cdot27+4\cdot6^9}{2^7\cdot6^7+2^7\cdot40\cdot9^4}\)

\(=\frac{2^{28}\cdot3^3+2^{11}\cdot3^9}{2^{14}\cdot3^7+2^{10}\cdot5\cdot3^8}\)

\(=\frac{3^3\cdot2^{11}\left(2^{17}+3^6\right)}{2^{10}\cdot3^7\left(2^4+5\cdot3\right)}\)

\(=\frac{2^{18}+2\cdot3^6}{6^4+3^5}\)

Đúng ko ta.Kết quả hổng đẹp chút nào:(((

13 tháng 9 2019

\(E=\frac{\left(\frac{2}{3}\right)^3\cdot\left(-\frac{3}{4}\right)^2\cdot\left(-1\right)^5}{\left(\frac{2}{5}\right)^2\cdot\left(\frac{-5}{12}\right)^3}\)

\(E=\frac{\frac{2^3}{3^3}\cdot\frac{3^2}{4^2}\cdot\left(-1\right)}{\frac{2^2}{5^2}\cdot\frac{\left(-5\right)^3}{12^3}}\)

\(E=\frac{\frac{-2}{3\cdot4}}{\frac{2^2}{5^2}\cdot\frac{-5^3}{2^6\cdot3^3}}=-\frac{\frac{1}{3}}{-\frac{5}{2^4\cdot3^3}}=\frac{2^4\cdot3^2}{5}\)

22 tháng 6 2016

\(a,\left(\frac{3}{8}+-\frac{3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)

   =  \(\left(-\frac{3}{8}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)

    = \(\frac{5}{24}:\frac{5}{6}+\frac{1}{2}\)

     = \(\frac{1}{4}+\frac{1}{2}\)

      =  \(\frac{3}{4}\)

b)\(-\frac{7}{3}.\frac{5}{9}+\frac{4}{9}.\left(-\frac{3}{7}\right)+\frac{17}{7}\)

    =\(-\frac{35}{27}+\left(-\frac{4}{21}\right)+\frac{17}{7}\)

   = \(-\frac{35}{27}+\frac{47}{21}\)

   =        \(\frac{178}{189}\)

c) \(\frac{117}{13}-\left(\frac{2}{5}+\frac{57}{13}\right)\)

  = \(\frac{117}{13}-\frac{311}{65}\)

 =       \(\frac{274}{65}\)

d) \(\frac{2}{3}-0,25:\frac{3}{4}+\frac{5}{8}.4\)

\(\frac{2}{3}-\frac{1}{4}:\frac{3}{4}+\frac{5}{8}.4\)

\(\frac{2}{3}-\frac{1}{3}+\frac{5}{2}\)

=     \(\frac{1}{3}+\frac{5}{2}\)

=         \(\frac{17}{6}\)

3 tháng 9 2015

3/4.8/9.15/16......9999/10000
= 3.8.15.....9999/4.9.16......10000
=101/50

14 tháng 10 2024

a; \(\dfrac{5}{6}\) + \(\dfrac{5}{12}\) + \(\dfrac{5}{20}\) + ... + \(\dfrac{5}{132}\)

 = 5.(\(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + ..+ \(\dfrac{1}{132}\))

= 5.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + ... + \(\dfrac{1}{11.12}\))

= 5.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ...+ \(\dfrac{1}{11}\) - \(\dfrac{1}{12}\))

= 5.(\(\dfrac{1}{2}\) - \(\dfrac{1}{12}\))

= 5.(\(\dfrac{6}{12}\) - \(\dfrac{1}{12}\))

= 5.\(\dfrac{5}{12}\)

\(\dfrac{25}{12}\)

6 tháng 11 2017

a, \(\dfrac{2\cdot8^4\cdot27^2+4\cdot6^9}{2^7\cdot6^7+2^7\cdot40\cdot9^4}\)

=\(\dfrac{2\cdot\left(2^3\right)^4\cdot\left(3^3\right)^2+2^2\cdot2^9\cdot3^9}{2^7\cdot2^7\cdot3^7+2^7\cdot2^3\cdot5\cdot\left(3^2\right)^4}\)

=\(\dfrac{2\cdot2^{12}\cdot3^6+2^{11}\cdot3^9}{2^{14}\cdot3^7+2^{10}\cdot5\cdot3^8}\)

=\(\dfrac{2^{11}\cdot3^6\cdot\left(2^2+3^3\right)}{2^{10}\cdot3^7\cdot\left(2^4+5\cdot3\right)}\)

=\(\dfrac{2^{11}\cdot3^6\cdot31}{2^{10}\cdot3^7\cdot31}\)

=\(\dfrac{2}{3}\)

6 tháng 11 2017

b, \(\dfrac{\dfrac{8}{27}\cdot\dfrac{9}{16}\cdot\left(-1\right)}{\dfrac{4}{25}\cdot\dfrac{-125}{1728}}\)

=\(\dfrac{\dfrac{8\cdot9\cdot\left(-1\right)}{27\cdot16}}{\dfrac{4\cdot\left(-125\right)}{25\cdot1728}}\)

=\(\dfrac{\dfrac{-1}{6}}{\dfrac{-5}{432}}\)

=\(\dfrac{-1}{6}\cdot\dfrac{-432}{5}\)

=\(\dfrac{72}{5}\)

\(a,\frac{-2}{3}x=8\)<=> \(x=-12\)

\(b,\frac{1}{4}:x=-3+\frac{3}{4}\)<=>\(\frac{1}{4}:x=\frac{-9}{4}\)<=>\(x=-9\)

\(c,\orbr{\begin{cases}2x-\frac{1}{3}=0\\0.5x+0.25=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=\frac{1}{6}\\x=\frac{-3}{4}\end{cases}}\)

16 tháng 7 2018

a) \(\frac{-2}{3}x+4=12\)

\(\Rightarrow\frac{-2}{3}x=12-4\)

\(\Rightarrow\frac{-2}{3}x=8\)

\(\Rightarrow x=8:\frac{-2}{3}\)

\(\Rightarrow x=-12\)

Vậy x = -12

b) \(\frac{-3}{4}+\frac{1}{4}:x=-3\)

\(\Rightarrow\frac{1}{4}:x=-3-\left(\frac{3}{4}\right)\)

\(\Rightarrow\frac{1}{4}:x=\frac{-9}{4}\)

\(\Rightarrow x=\frac{1}{4}:\frac{-9}{4}\)

\(\Rightarrow x=\frac{-1}{9}\)

Vậy  \(x=\frac{-1}{9}\)

c) \(\left(2x-\frac{1}{3}\right)\left(0,5x+0,25\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{3}=0\\0,5x+0,25=0\end{cases}}\Rightarrow\orbr{\begin{cases}2x=\frac{1}{3}\\0,5x=-0,25\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{6}\\x=-0,5\end{cases}}\)

Vậy  \(x=\frac{1}{6}\)hoặc \(x=-0,5\)

_Chúc bạn học tốt_

a: \(=\left(1.25\right)^{16}\cdot8^{16}\cdot8=8\cdot10^{16}\)

b: \(=\left(\dfrac{5}{2}\right)^{13}\cdot4^{13}\cdot4^2=10^{13}\cdot4^2\)

c: \(=\left(0.25\right)^4\cdot8^4\cdot8^2=2^4\cdot8^2=64\cdot16=1024\)

d: \(=\left(\dfrac{1}{2}\right)^{15}\cdot2^{18}=2^3=8\)

e: \(=\left(\dfrac{1}{3}\cdot6\right)^7\cdot\left(\dfrac{1}{2}\right)^7\cdot\dfrac{1}{2}=2^7\cdot\left(\dfrac{1}{2}\right)^7\cdot\dfrac{1}{2}=\dfrac{1}{2}\)

22 tháng 8 2019

a, \(\frac{1}{4}+\frac{5}{12}-\frac{1}{13}-\frac{7}{8}\)

\(=\left(\frac{1}{4}+\frac{5}{12}\right)-\left(\frac{1}{13}+\frac{7}{8}\right)\)

\(=\frac{2}{3}-\frac{99}{104}\)

\(=-\frac{89}{312}\)

b, \(11\frac{3}{13}-2\frac{4}{7}+5\frac{3}{13}\)

\(=\left(11\frac{3}{13}+5\frac{3}{13}\right)-2\frac{4}{7}\)

\(=\frac{214}{13}-\frac{18}{7}\)

\(=\frac{1264}{91}\)

c, \(\left(6\frac{4}{9}+3\frac{7}{11}\right)-4\frac{4}{9}\)

\(=6\frac{4}{9}+3\frac{7}{11}-4\frac{4}{9}\)

\(=\left(6\frac{4}{9}-4\frac{4}{9}\right)+3\frac{7}{11}\)

\(=2+3\frac{7}{11}\)

\(=5\frac{7}{11}\)

\(=\frac{62}{11}\)

d, \(\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\left(\frac{1}{3}-0,25-\frac{1}{12}\right)\)

\(=\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)

\(=\left(6,17+3\frac{5}{9}-2\frac{36}{97}\right)\cdot0\)

\(=0\)

e, \(-1,5\cdot\left(1+\frac{2}{3}\right)\)

\(=-\frac{3}{2}\cdot\frac{5}{3}\)

\(=-\frac{5}{2}\)

f, Đặt \(A=1^2+2^2+3^2+...+100^2\)

\(=1+2\left(3-1\right)+3\left(4-1\right)+...+100\left(101-1\right)\)

\(=1+2\cdot3-2+3\cdot4-3+...+100\cdot101-100\)

\(=\left(2\cdot3+3\cdot4+...+100\cdot101\right)-\left(1+2+3+...+100\right)\)

Đặt B = 2 . 3 + 3 . 4 + ... + 100 . 101 

3B = 2 . 3 ( 4 - 1 ) + 3 . 4 ( 5 - 2 ) + ... + 100 . 101 . ( 102 - 99 )

3B = 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + ... + 100 . 101 . 102 - 99 . 100 . 101 

3B = 100 . 101 . 102

B = \(\frac{100\cdot101\cdot102}{3}\)

B = 343400

Thay B vào A. Ta được :

\(A=343400-\left(1+2+3+...+100\right)\)

Thay C = 1 + 2 + 3 + ... + 100

Dãy số 1; 2; 3; ...; 100 có số số hạng là:

( 100 - 1 ) : 1 + 1 = 100 ( số hạng )

Tổng của dãy số đó là :

( 100 + 1 ) . 100 : 2 = 5050

=> C = 5050

Thay C vào A. Ta được :

\(A=343400-5050\)

\(A=338350\)

Vậy A = 338350