K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2016

bn lớp mấy vậy

29 tháng 1 2016

a)2x^3+3x^2-x-1=0

\(\Leftrightarrow\)(2x^3+3x^2)-(x-1)

\(\Leftrightarrow\)2x^2(x+3)-(x-1)

ĐẾN ĐÂY CHẢ BIT NHÂN TỬ CHUNG LÀ SỐ NÀO NỮA HÌNH NHƯ SAI ĐỀ

10 tháng 3 2016

Mới lớp 6, tớ ko giải được...

11 tháng 12 2022

a:=>x+1=0 và y-2=0

=>x=-1 và y=2

b: \(\Leftrightarrow\left(x-5;y-7\right)\in\left\{\left(1;1\right);\left(-1;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(6;8\right);\left(4;6\right)\right\}\)

c: (x+4)(y-2)=2

=>\(\left(x+4;y-2\right)\in\left\{\left(1;2\right);\left(2;1\right);\left(-1;-2\right);\left(-2;-1\right)\right\}\)

hay \(\left(x,y\right)\in\left\{\left(-3;4\right);\left(-2;3\right);\left(-5;0\right);\left(-6;1\right)\right\}\)

f: =>(x-12)(y-6)=-2

=>\(\left(x-12;y-6\right)\in\left\{\left(1;-2\right);\left(-2;1\right);\left(-1;2\right);\left(2;-1\right)\right\}\)

hay \(\left(x,y\right)\in\left\{\left(13;4\right);\left(10;7\right);\left(11;8\right);\left(14;5\right)\right\}\)

Sửa đề: x^2+y^2+2x+6y-15=0

Δ vuông góc d nên Δ: 3x+4y+c=0

(C);x^2+y^2+2x+6y-15=0

=>x^2+2x+1+y^2+6y+9-25=0

=>(x+1)^2+(y+3)^2=25

=>R=5; I(-1;-3)

Kẻ IH vuông góc AB

=>H là trung điểm của AB

=>AH=6/2=3cm

=>IH=4cm

=>d(I;Δ)=IH=4

=>|c+3-12|/5=4

=>c=-11 hoặc c=29

=>3x+4y-11=0 hoặc 3x+4y+29=0

NV
25 tháng 4 2020

Bài 2:

Đường tròn (C) tâm \(I\left(-2;-\frac{7}{2}\right)\) bán kính \(R=\frac{\sqrt{133}}{2}\)

Sao số xấu dữ vậy ta? Số to như vầy tính toán mệt lắm

Gọi tiếp tuyến d của đường tròn có dạng:

\(a\left(x-2\right)+b\left(y-6\right)=0\Leftrightarrow ax+by-2a-6b=0\)

d tiếp xúc (C) \(\Leftrightarrow d\left(I;d\right)=R\)

\(\Leftrightarrow\frac{\left|-2a-\frac{7}{2}b-2a-6b\right|}{\sqrt{a^2+b^2}}=\frac{\sqrt{133}}{2}\)

\(\Leftrightarrow\left|6a+19b\right|=\sqrt{133\left(a^2+b^2\right)}\)

\(\Leftrightarrow97a^2-228ab-288b^2=0\)

Chắc bạn ghi sai đề thật, nghiệm pt này xấu hủy hoại, chắc chẳng ai cho đề kiểu như vầy hết

NV
25 tháng 4 2020

Bài 1:

Gọi d' là đường thẳng qua A và vuông góc d

Phương trình d':

\(4\left(x-1\right)+3\left(y+7\right)=0\Leftrightarrow4x+3y+17=0\)

Tâm của (C) nằm trên d' nên tọa độ có dạng \(I\left(a;\frac{-4a-17}{3}\right)\Rightarrow\overrightarrow{AI}=\left(a-1;\frac{4-4a}{3}\right)\)

\(IA^2=R^2\Leftrightarrow\left(a-1\right)^2+\left(\frac{4-4a}{3}\right)^2=25\)

\(\Rightarrow\left(a-1\right)^2=9\Rightarrow\left[{}\begin{matrix}a=4\\a=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(4;-11\right)\\I\left(-2;-3\right)\end{matrix}\right.\)

Có 2 đường tròn thỏa mãn:

\(\left[{}\begin{matrix}\left(x-4\right)^2+\left(y+11\right)^2=25\\\left(x+2\right)^2+\left(y+3\right)^2=25\end{matrix}\right.\)

NV
7 tháng 3 2020

1.

a/ ĐKXĐ: \(-1\le x\le5\)

\(\Leftrightarrow\sqrt{x+3}\le\sqrt{5-x}+\sqrt{x+1}\)

\(\Leftrightarrow x+3\le6+2\sqrt{\left(5-x\right)\left(x+1\right)}\)

\(\Leftrightarrow x-3\le2\sqrt{-x^2+4x+5}\)

- Với \(x< 3\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\ge3\) cả 2 vế ko âm, bình phương:

\(x^2-6x+9\le-4x^2+16x+20\)

\(\Leftrightarrow5x^2-22x-11\le0\) \(\Rightarrow\frac{11-4\sqrt{11}}{5}\le x\le\frac{11+4\sqrt{11}}{5}\)

\(\Rightarrow3\le x\le\frac{11+4\sqrt{11}}{5}\)

Vậy nghiệm của BPT đã cho là \(-1\le x\le\frac{11+4\sqrt{11}}{5}\)

NV
7 tháng 3 2020

1b/

Đặt \(\sqrt{2x^2+8x+12}=t\ge2\)

\(\Rightarrow x^2+4x=\frac{t^2}{2}-6\)

BPT trở thành:

\(\frac{t^2}{2}-12\ge t\Leftrightarrow t^2-2t-24\ge0\) \(\Rightarrow\left[{}\begin{matrix}t\le-4\left(l\right)\\t\ge6\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x^2+8x+12}\ge6\)

\(\Leftrightarrow2x^2+8x-24\ge0\Rightarrow\left[{}\begin{matrix}x\le-6\\x\ge2\end{matrix}\right.\)

28 tháng 2 2021

Áp dụng cosi:

`x^2+y^2>=2xy`

`=>x^2+y^2>=2.7=14`

`=>` Chọn C.14

15 tháng 4 2020

câu D nha