K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2022

a:=>x+1=0 và y-2=0

=>x=-1 và y=2

b: \(\Leftrightarrow\left(x-5;y-7\right)\in\left\{\left(1;1\right);\left(-1;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(6;8\right);\left(4;6\right)\right\}\)

c: (x+4)(y-2)=2

=>\(\left(x+4;y-2\right)\in\left\{\left(1;2\right);\left(2;1\right);\left(-1;-2\right);\left(-2;-1\right)\right\}\)

hay \(\left(x,y\right)\in\left\{\left(-3;4\right);\left(-2;3\right);\left(-5;0\right);\left(-6;1\right)\right\}\)

f: =>(x-12)(y-6)=-2

=>\(\left(x-12;y-6\right)\in\left\{\left(1;-2\right);\left(-2;1\right);\left(-1;2\right);\left(2;-1\right)\right\}\)

hay \(\left(x,y\right)\in\left\{\left(13;4\right);\left(10;7\right);\left(11;8\right);\left(14;5\right)\right\}\)

a: Đặt |x-6|=a, |y+1|=b

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

=>|x-6|=1 và |y+1|=1

\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)

b: Đặt |x+y|=a, |x-y|=b

Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)

=>HPTVN

c: Đặt |x+y|=a, |x-y|=b

Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)

=>|x+y|=2 và x=y

=>|2x|=2 và x=y

=>x=y=1 hoặc x=y=-1

12 tháng 8 2019

1.

a) 13\(\frac{1}{3}\) : 1\(\frac{1}{3}\) = 26 : (2x - 1)

<=> \(\frac{40}{3}:\frac{4}{3}\) = 13x - 26

<=> 10 + 26 = 13x

<=> 13x = 36

<=> x = \(\frac{36}{13}\)

b) 0,2 : 1\(\frac{1}{5}\) = \(\frac{2}{3}\) : (6x + 7)

<=> \(\frac{1}{5}:\frac{6}{5}\) = \(\frac{1}{9}x\) : \(\frac{2}{21}\)

<=> \(\frac{1}{6}\) = \(\frac{1}{9}x\) : \(\frac{2}{21}\)

<=> \(\frac{1}{9}x\) = \(\frac{2}{21}.\frac{1}{6}\) = \(\frac{1}{63}\)

<=> x = \(\frac{1}{7}\)

c) \(\frac{37-x}{x+13}\) = \(\frac{3}{7}\)

<=> (37 - x) . 7 = 3.(x + 13)

<=> 119 - 7x = 3x + 39

<=> -7x - 3x = 39 - 119

<=> -10x = -80

<=> x = 8

d) \(\frac{x-1}{x+5}=\frac{6}{7}\)

<=> 7(x - 1) = 6(x + 5)

<=> 7x - 7 = 6x + 30

<=> 7x - 6x = 30 + 7

<=> x = 37

e)

2\(\frac{2}{\frac{3}{0,002}}\) = \(\frac{1\frac{1}{9}}{x}\)

<=> \(\frac{1501}{750}\) = \(\frac{10}{9}:x\)

<=> x = \(\frac{10}{9}:\frac{1501}{750}\) = \(\frac{2500}{4503}\)

12 tháng 8 2019

Bài 2. đề sai

Bài 3.

a) 6,88 : x = \(\frac{12}{27}\)

<=> x = 6,88 : \(\frac{12}{27}\)

<=> x = 15,48

b) 8\(\frac{1}{3}\) : \(11\frac{2}{3}\) = 13 : 2x

<=> \(\frac{25}{3}:\frac{35}{3}\) = 13 : 2x

<=> \(\frac{5}{7}=13:2x\)

<=> 2x = \(13:\frac{5}{7}\) = \(\frac{91}{5}\)

<=> x = 9,1

12 tháng 11 2017

đúng rùi đó

15 tháng 7 2018
https://i.imgur.com/RNmuuOR.jpg
NV
29 tháng 2 2020

1.

\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)

\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)

Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá

2.

\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

Đặt \(x+y+z=t\Rightarrow0< t\le1\)

\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

NV
29 tháng 2 2020

3.

\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)

Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)

Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)

4.

ĐKXĐ: \(-2\le x\le2\)

\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)

\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)

Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)

\(y_{min}=-2\) khi \(x=-2\)

25 tháng 9 2019

có ái đó giúp mình với mình đang cần gấp

10 tháng 12 2017

a) \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)

b) \(x^2-2x-15=\left(x^2-2x+1\right)-16=\left(x-1\right)^2-4^2=\left(x-1-4\right)\left(x-1+4\right)=\left(x-5\right)\left(x+3\right)\)

c) \(5x^2y^3-25x^3y^4+10x^3y^3=5x^2y^3\left(1-5xy+2x\right)\)

d) \(12x^2y-18xy^2-30y^2=6\left(2x^2y-3xy^2-5y^2\right)\)

e, ntc: x-y

f, đối dấu --> ntc

g, như ý f

h, \(36-12x+x^2=\left(6-x\right)^2=\left(x-6\right)^2\)

i, \(3x^3y^2-6x^2y^3+9x^2y^2=3x^2y^2\left(x-y+3\right)\)

10 tháng 12 2017

thanks