Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4 : \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
Đặt \(x^2+5x=a\) . Phương trình trở thành :
\(a^2-2a-24=0\)
\(\Leftrightarrow\left(a+4\right)\left(a-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+4=0\\a-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-4\\a=6\end{matrix}\right.\)
Với \(a=-4\)
\(\Leftrightarrow x^2+5x=-4\)
\(\Leftrightarrow x^2+5x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)
Với \(a=6\)
\(\Leftrightarrow x^2+5x=6\)
\(\Leftrightarrow x^2+5x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{-1;2;-3;-4\right\}\)
1) x4 - 5x2 + 4 = 0
⇔ x4 - x2 - 4x2 + 4 = 0
⇔ x2(x2 - 1) - 4(x2 - 1) = 0
⇔ (x2 - 1)(x2 - 4) = 0
⇔ \(\left\{{}\begin{matrix}x^2-1=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\x=\pm2\end{matrix}\right.\)
Vậy \(x=\pm1\)và \(x=\pm2\)
chắc bn nảy hỏi lun cả bài tâp về nhà quá, làm km 1 câu
a) = a+a+a + a +a +1 -a -a -a = a(a+a+1) +(a+a+1) - a(a+a+1)= (a+a+1)(a-a+1)
tự bn thêm mũ 4;3;2 vào được là bn làm dc cac câu sau
Lời giải:
a)
\(x^2-2x=24\)
\(\Leftrightarrow x^2-6x+4x-24=0\)
\(\Leftrightarrow x(x-6)+4(x-6)=0\Leftrightarrow (x+4)(x-6)=0\)
\(\Rightarrow \left[\begin{matrix} x+4=0\\ x-6=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-4\\ x=6\end{matrix}\right.\)
b)
\(x^3-7x+6=0\Leftrightarrow (x^3-x)-(6x-6)=0\)
\(\Leftrightarrow x(x^2-1)-6(x-1)=0\)
\(\Leftrightarrow x(x-1)(x+1)-6(x-1)=0\)
\(\Leftrightarrow (x-1)(x^2+x-6)=0\)
\(\Leftrightarrow (x-1)(x^2-2x+3x-6)=0\)
\(\Leftrightarrow (x-1)[x(x-2)+3(x-2)]=0\)
\(\Leftrightarrow (x-1)(x-2)(x+3)=0\)
\(\Rightarrow \left[\begin{matrix} x-1=0\\ x-2=0\\ x+3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=1\\ x=2\\ x=-3\end{matrix}\right.\)
c) Xem lại đề.
d) Đặt \(x^2+x+4=a\) thì pt trở thành:
\(a^2+8ax+16x^2=0\)
\(\Leftrightarrow a^2+2.a.4x+(4x)^2=0\)
\(\Leftrightarrow (a+4x)^2=0\Rightarrow a+4x=0\)
\(\Rightarrow x^2+x+4+4x=0\)
\(\Rightarrow x(x+1)+4(x+1)=0\Leftrightarrow (x+1)(x+4)=0\)
\(\Rightarrow \left[\begin{matrix} x+4=0\rightarrow x=-4\\ x+1=0\rightarrow x=-1\end{matrix}\right.\)
3) \(x^2-7x+6=0\)
\(\Leftrightarrow x^2-6x-x+6=0\)
\(\Leftrightarrow x\left(x-6\right)-\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)
S=\(\left\{6;1\right\}\)
\(\)
\(1.\)
\(a.\)
\(x^2-2x=x\left(x-2\right)\)
b.
\(3y^3+6xy^2+3x^2y\)
\(=3y\left(y^2+2xy+x^2\right)\)
\(=3y\left(x+y\right)^2\)
\(c.\)
\(x^2-2xy-xy+2y^2\)
\(=x\left(x-2y\right)-y\left(x-2y\right)\)
\(=\left(x-y\right)\left(x-2y\right)\)
\(2.\)
\(a.\)
\(x^2-y^2+5x-5y\)
\(=\left(x-y\right)\left(x+y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+5\right)\)
\(b.\)
\(x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2+y\right)\left(x+2-y\right)\)
\(c.\)
\(x^2-6xy+9y^2-16\)
\(=\left(x^2-6xy+9y^2\right)-4^2\)
\(=\left(x-3\right)^2-4^2\)
\(=\left(x-3-4\right)\left(x-3+4\right)\)
\(=\left(x-7\right)\left(x+1\right)\)
Tương tự câu \(d,e,g\)
\(3.\)
\(a.\)
\(x^3-2x=0\)
\(\Rightarrow x\left(x^2-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{2}\end{matrix}\right.\)
\(b.\)
\(x\left(x-4\right)+\left(x-4\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)
\(c.\)
\(x\left(x-3\right)+4x-12=0\)
\(\Rightarrow x\left(x-3\right)+3\left(x-3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Tương tự \(d,e,g\)
a ) \(x^2-25-\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-5\right)-\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-5-1\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)
b ) \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^2-\left(2x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left[\left(2x-1\right)-\left(2x+1\right)\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
c ) \(x^2\left(x^2+4\right)-x^2-4=0\)
\(\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x^2+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x^2=-4\left(VL\right)\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
\(a,\Leftrightarrow\left(x+1-2x-4\right)\left(x+1+2x+4\right)=0\\ \Leftrightarrow\left(-x-3\right)\left(3x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{5}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)^2+\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x+2+x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ c,ĐK:x\ge0\\ PT\Leftrightarrow x-3\sqrt{x}+4\sqrt{x}-12=0\\ \Leftrightarrow\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)=0\\ \Leftrightarrow\sqrt{x}=3\left(\sqrt{x}+4>0\right)\\ \Leftrightarrow x=9\left(tm\right)\)