Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
Gọi ba phần được chia lần lượt là a,b,c
Theo đề, ta có: \(\dfrac{a}{\dfrac{3}{5}}=\dfrac{b}{\dfrac{5}{4}}=\dfrac{c}{\dfrac{9}{10}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{3}{5}}=\dfrac{b}{\dfrac{5}{4}}=\dfrac{c}{\dfrac{9}{10}}=\dfrac{a+b+c}{\dfrac{3}{5}+\dfrac{5}{4}+\dfrac{9}{10}}=\dfrac{195}{\dfrac{11}{4}}=\dfrac{780}{11}\)
Do đó: a=468/11; b=975/11; c=702/11
2x-3y+5z=1 hoặc =-1
TH1: \(\dfrac{x}{y}\)=\(\dfrac{3}{2}\)=>\(\dfrac{x}{3}\)=\(\dfrac{y}{2}\)=>\(\dfrac{x}{15}\)=\(\dfrac{y}{10}\)
\(\dfrac{y}{z}\)=\(\dfrac{5}{7}\)=>\(\dfrac{y}{5}\)=\(\dfrac{z}{7}\)=>\(\dfrac{y}{10}\)=\(\dfrac{z}{14}\)
\(\Rightarrow\)\(\dfrac{x}{15}\)=\(\dfrac{y}{10}\)=\(\dfrac{z}{14}\)=>\(\dfrac{2x}{30}\)=\(\dfrac{3y}{30}\)=\(\dfrac{5z}{70}\)
Áp dụng tính chát dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x-3y+5z}{30-30+70}\)=\(\dfrac{1}{70}\)
=>x=1.15:7=\(\dfrac{3}{14}\)
y=\(\dfrac{1}{7}\)
z=\(\dfrac{1}{5}\)
TH2:............=-1 tự tính nhé làm tương tựmình còn phải ôn bài
Do x, y tỉ lệ thuận \(\Rightarrow\dfrac{x_1}{y_1}=\dfrac{x_2}{y_2}=\dfrac{4}{5}\div\dfrac{8}{15}=\dfrac{3}{2}\) \(\Rightarrow x_1=\dfrac{3}{2}y_1\)
\(y_1-x_1=\dfrac{-1}{4}\Rightarrow y_1-\dfrac{3}{2}y_1=\dfrac{-1}{4}\Rightarrow\dfrac{-1}{2}y_1=\dfrac{-1}{4}\)
\(\Rightarrow y_1=\dfrac{1}{2}\) \(\Rightarrow x_1=y_1-\dfrac{-1}{4}=\dfrac{3}{4}\)
x và y tỉ lệ thuận
nên x1/x2=y1/y2
\(\Leftrightarrow\dfrac{x_1}{\dfrac{4}{5}}=\dfrac{y_1}{\dfrac{8}{15}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{\dfrac{4}{5}}=\dfrac{y_1}{\dfrac{8}{15}}=\dfrac{y_1-x_1}{\dfrac{8}{15}-\dfrac{4}{5}}=\dfrac{-1}{4}:\dfrac{-4}{15}=\dfrac{-1}{4}\cdot\dfrac{15}{-4}=\dfrac{15}{16}\)
=>x1=3/4; y1=1/2
b/ Theo đề bài thì ta có:
\(\left\{{}\begin{matrix}f\left(1\right)=f\left(-1\right)\\f\left(2\right)=f\left(-2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_4+a_3+a_2+a_1+a_0=a_4-a_3+a_2-a_1+a_0\\16a_4+8a_3+4a_2+2a_1+a_0=16a_4-8a_3+4a_2-2a_1+a_0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_3+a_1=0\\4a_3+a_1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_3=0\\a_1=0\end{matrix}\right.\)
Ta có: \(f\left(x\right)-f\left(-x\right)=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0-\left(a_4x^4-a_3x^3+a_2x^2-a_1x+a_0\right)\)
\(=2a_3x^3+2a_1x=0\)
Vậy \(f\left(x\right)=f\left(-x\right)\)với mọi x
a/ Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)
\(\Rightarrow c-a=-2\left(a-b\right)=-2\left(b-c\right)\)
Thế vào B ta được
\(B=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
\(=4\left(a-b\right)\left(b-c\right)-\left[-2\left(a-b\right).\left(-2\right).\left(b-c\right)\right]\)
\(=4\left(a-b\right)\left(b-c\right)-4\left(a-b\right)\left(b-c\right)=0\)
Câu a thì dài, câu b thì ngắn. Xin giải câu b trước để đi ngủ
b) Giải:
Vì \(f\left(x_1.x_2\right)=f\left(x_1\right).f\left(x_2\right)\) nên:
\(f\left(4\right)=f\left(2.2\right)=f\left(2\right).f\left(2\right)=10.10=100\)
\(f\left(16\right)=f\left(4.4\right)=f\left(4\right).f\left(4\right)=100.100=10000\)
\(f\left(32\right)=f\left(16.2\right)=f\left(16\right).f\left(2\right)=10000.10=100000\)
Vậy \(f\left(32\right)=100000\)
Bài 1:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{5}}=\dfrac{x+y}{\dfrac{3}{2}+\dfrac{4}{5}}=\dfrac{0.5}{2.3}=\dfrac{5}{23}\)
Do đó: x=15/46; y=4/23
Bài 2:
1: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=k+1\)
\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=k+1\)
Do đó: \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
Vì x,y tỉ lệ thuận nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
a: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{3}=\dfrac{-2}{\dfrac{3}{8}}=-2\cdot\dfrac{8}{3}=-\dfrac{16}{3}\)
=>\(x_1=-16\)
b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow\dfrac{x_2}{x_1}=\dfrac{y_2}{y_1}\)
\(\Leftrightarrow\dfrac{x_2}{-6}=\dfrac{y_2}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_2}{-6}=\dfrac{y_2}{4}=\dfrac{y_2-x_2}{4-\left(-6\right)}=\dfrac{-5}{10}=-\dfrac{1}{2}\)
Do đó: \(x_2=3;y_2=-2\)
x và y tỉ lệ thuận
nên x1/y1=x2/y2
=>\(\dfrac{x1}{y1}=\dfrac{x2}{y2}=\dfrac{x1+x2}{y1+y2}=\dfrac{5}{3}:\dfrac{-10}{3}=\dfrac{5}{3}\cdot\dfrac{-3}{10}=\dfrac{-1}{2}\)
=>x=-1/2y
a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{5x}{10}=\dfrac{3y}{9}=\dfrac{5x+3y}{10+9}=\dfrac{38}{19}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.2=4\\y=2.3=6\end{matrix}\right.\)
b) \(\dfrac{x}{3}=\dfrac{y}{5}\Rightarrow\dfrac{x^2}{3^2}=\dfrac{y^2}{5^2}=\dfrac{x^2+y^2}{9+25}=\dfrac{68}{34}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.5=10\end{matrix}\right.\)
c) Nếu phải dùng tính chất của dãy tỉ số bằng nhau thì mình không chắc mình làm đúng, thôi thì:
Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)
Vì \(x.y=10\) nên \(2k.5k=10\Rightarrow10k^2=10\Rightarrow k^2=1\Rightarrow\left[{}\begin{matrix}k=1\\k=-1\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1.2=2\\x=\left(-1\right).2=2\end{matrix}\right.\\\left[{}\begin{matrix}y=1.5=5\\y=\left(-1\right).5=-5\end{matrix}\right.\end{matrix}\right.\)