Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(x=2\): \(2f\left(2\right)-2f\left(-2\right)=2+10=12\)
Với \(x=-2\): \(2f\left(-2\right)+2f\left(2\right)=-2+10=8\)
Cộng hai phương trình trên vế với vế ta được:
\(4f\left(2\right)=20\Leftrightarrow f\left(2\right)=5\)
Với x=10, ta có:
2. f(10)- 10. f(-10)=10+10
2f(10)-10f(-10)=20 (1)
Với x=-10. ta có:
2. f(-10)+10 f(10)=-10+10=0
=> 2 f (-10)=-10 f(10)
=> f(-10)=-5 f(10) (2)
Thay f(-10) từ PT (2) vào PT (1). ta có:
2f(10)-10f(-10)=20
<=> 2f(10) -10. (-5 f(10))=20
<=> 2 f(10)+50f(10)=20
<=> 52 f(10)=20
=> f(10)= 5/13
thế @Trần Khánh Linh ai cần bạn xin lỗi đâu mà bạn Thái viết nam hỏi học sinh lớp 7 chứ phải lớp 5 đâu mà bạn xía vào làm gì
\(xf\left(x-2\right)=\left(x+4\right)f\left(x+10\right)\)(*)
Thế \(x=0\)vào (*) ta được:
\(0f\left(0-2\right)=\left(0+4\right)f\left(0+10\right)\Leftrightarrow4f\left(10\right)=0\Leftrightarrow f\left(10\right)=0\)
Do đó \(x=10\)là một nghiệm của đa thức \(f\left(x\right)\).
Thế \(x=-4\)vào (*) ta được:
\(-4f\left(-4-2\right)=\left(-4+4\right)f\left(-4+10\right)\Leftrightarrow f\left(-6\right)=0\)
Do đó \(x=-6\)là một nghiệm của đa thức \(f\left(x\right)\).
Do đó \(f\left(x\right)\)có ít nhất hai nghiệm.
Với x=10, ta có:
2. f(10)- 10. f(-10)=10+10
2f(10)-10f(-10)=20 (1)
Với x=-10. ta có:
2. f(-10)+10 f(10)=-10+10=0
=> 2 f (-10)=-10 f(10)
=> f(-10)=-5 f(10) (2)
Thay f(-10) từ PT (2) vào PT (1). ta có:
2f(10)-10f(-10)=20
<=> 2f(10) -10. (-5 f(10))=20
<=> 2 f(10)+50f(10)=20
<=> 52 f(10)=20
=> f(10)= 5/13