Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(=\dfrac{\sqrt{20}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-\dfrac{8}{\sqrt{5}-1}\)
\(=2\sqrt{5}-2-2\sqrt{5}\)
=-2
c: \(=\dfrac{\sqrt{4}\left(2\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-2\sqrt{2}\right)}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\)
\(=\dfrac{-3}{\sqrt{6}}=-\dfrac{\sqrt{6}}{2}\)
\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
\(=\sqrt{\frac{6-2\sqrt{5}}{2}}+\sqrt{\frac{6+2\sqrt{5}}{2}}\)
\(=\sqrt{\frac{5-2\sqrt{5}+1}{2}}+\sqrt{\frac{5+2\sqrt{5}+1}{2}}\)
\(=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}+\frac{\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}\)
\(=\frac{\sqrt{5}-1}{\sqrt{2}}+\frac{\sqrt{5}+1}{\sqrt{2}}\)
\(=\frac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\frac{2\sqrt{5}}{\sqrt{2}}=\frac{\sqrt{2}.\sqrt{2}.\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
a: \(=\dfrac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\dfrac{3\sqrt{5}+5-3-\sqrt{5}}{2\left(\sqrt{5}+1\right)}=\dfrac{2\sqrt{5}+2}{2\left(\sqrt{5}+1\right)}=1\)
b: \(=\sqrt{\sqrt{3}}\left(2\sqrt{2}-2\cdot5\sqrt{2}+4\cdot8\sqrt{2}\right)\)
\(=\sqrt{\sqrt{3}}\cdot24\sqrt{2}\)
d: \(=\dfrac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
b,\(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\) \(=\sqrt{8\sqrt{3}}-2\sqrt{50\sqrt{3}}+4\sqrt{8\sqrt{3}}\)
\(=2\sqrt{2\sqrt{3}}-10\sqrt{2\sqrt{3}}+8\sqrt{2\sqrt{3}}\)
\(=0\)
d,\(A=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
\(\sqrt{2}A=\sqrt{2}(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}})\)
\(\sqrt2A=\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\)
\(\sqrt2A=\sqrt{(\sqrt5-1)^2}\) \(+\sqrt{(\sqrt5+1)^2}\) \(=\sqrt5-1 +\sqrt5+1=2\sqrt5\)
\(\Rightarrow A=\dfrac{2\sqrt5}{\sqrt2}\) \(=\sqrt{10}\)
a. \(\frac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{5}+1\right)}\)
\(=\frac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\frac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\frac{3\sqrt{5}-3+5-\sqrt{5}}{2\left(\sqrt{5}+1\right)}\)
\(=\frac{2\sqrt{5}+2}{2\left(\sqrt{5}+1\right)}=\frac{2\left(\sqrt{5}+1\right)}{2\left(\sqrt{5}+1\right)}=1\)
h)\(\sqrt{5}+\sqrt{9-4\sqrt{5}}=\sqrt{5}+\sqrt{\left(\sqrt{5}\right)^2-2.2.\sqrt{5}+2^2}\)
\(=\sqrt{5}+\sqrt{\left(\sqrt{5-2}\right)^2}\)
\(=\sqrt{5}+\left|\sqrt{5}-2\right|\)
\(=\sqrt{5}+\sqrt{5}-2\)
\(=2\sqrt{5}-2\)
a) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{1+2\sqrt{5}+\left(\sqrt{5}\right)^2}+\sqrt{1-2\sqrt{5}+\left(\sqrt{5}\right)^2}\)\(=\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(1-\sqrt{5}\right)^2}=1+\sqrt{5}-\left(1-\sqrt{5}\right)=1+\sqrt{5}-1+\sqrt{5}=2\sqrt{5}\)
a) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
b) \(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}\)
\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
\(=2\sqrt{2}+\sqrt{5}+2\sqrt{2}-\sqrt{5}=4\sqrt{2}\)
c) \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
\(=2\sqrt{2\sqrt{3}}-10\sqrt{2\sqrt{3}}+8\sqrt{2\sqrt{3}}=0\)
2) \(A=\sqrt{15a^2-8a\sqrt{15}+16}\\ =\sqrt{\left(a\sqrt{15}-4\right)^2}\)
b) Khi a=\(\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}\) thì
\(A=\sqrt{\left[\left(\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}\right)\sqrt{15}-4\right]^2}\)
\(=\sqrt{\left[\left(3+5\right)-4\right]^2}\)
\(=\sqrt{4^2}\)
\(=4\)
a)\(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}\)
= \(2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}\)
= \(4\sqrt{5}\)
b) \(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\)
= \(\sqrt{3\left(5-2\sqrt{6}\right)}-\sqrt{33-12\sqrt{6}}\)
= \(\sqrt{3\left(5-2\sqrt{6}\right)}-\sqrt{3\left(11-4\sqrt{6}\right)}\)
\(a,2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}\)
\(=2\sqrt{5}-\sqrt{5^2.5}-\sqrt{4^2.5}+\sqrt{11^2.5}\)
\(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}\)
\(=4\sqrt{5}\)
\(b,\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3-2\sqrt{6}\right)^2}\)
\(=|3-\sqrt{6}|+|3-2\sqrt{6}|\)
\(=3-\sqrt{6}+2\sqrt{6}-3\)
\(=\sqrt{6}\)
\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=\frac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{5-2\sqrt{5}+1}+\sqrt{5+2\sqrt{5}+1}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\frac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
chúc bạn học tốt:)