\(M=1+9^{100}+94^{100}+1994^{100}\)có phải số chính phương không?
b, CMR:
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

Câu này chắc chắn có bạn trả lời được thôi. Dùng đồng dư hoặc hàm euler.
câu a: Mình gợi ý chứng minh M chia hết cho 3 nhưng không chia hết cho 9 nên M không là số chính phương.

11 tháng 8 2017

a, Nguyên lý đirichle cứu với!!!!!!!! | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam

b, Ta có: \(20^5\equiv1\left(mod11\right)\)

\(\left(20^5\right)^3\equiv1^3\equiv1\left(mod11\right)\)

Tương ứng với \(20^{15}\) : 11 dư 1

=> 2015 - 1 \(⋮\) 11 (đpcm)

c, Có: \(2^{30}\equiv12\left(mod13\right)\);

\(3^{15}\equiv1\left(mod13\right)\)

\(\left(3^{15}\right)^2\equiv1^2\equiv1\left(mod13\right)\)

<=> \(2^{30}+3^{30}\) \(\equiv12+1\equiv13\left(mod13\right)\)

Vì 13 chia hết cho 13 nên 230 + 330 chia hết cho 13 (đpcm)

d, tượng tự b

25 tháng 9 2017

a. Đặt A = 1993 - 199

= 199(1992-1)

= 199(199-1)(199+1)

= 199 . 198 . 200

Vì 200 \(⋮\) 200 nên A \(⋮\) 200 (đpcm)

18 tháng 10 2017

Ta có: \(\dfrac{n^3-1}{n^3+1}=\dfrac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n+1\right)\left(n^2-n+1\right)}=\dfrac{\left(n-1\right)[\left(n+0,5\right)^2+0,75]}{\left(n+1\right)[\left(n-0,5\right)^2+0,75]}\)

Thay vào M ta có:

\(M=\dfrac{2,5^2+0.75}{3.\left(1,5^2+0,75\right)}.\dfrac{2.\left(3,5^2+0,75\right)}{4.\left(2,5^2+0,75\right)}...\dfrac{99[\left(100,5\right)^2+0,75]}{101.[\left(99,5\right)^2+0,75}\)

\(=\dfrac{1.2.3...99}{3.4.5...101}.\dfrac{\left(2,5^2+0,75\right).\left(3,5^2+0,75\right)...[\left(100,5\right)^2+0,75]}{\left(1,5^2+0,75\right).\left(2,5^2+0,75\right)...[\left(99,5\right)^2+0,75]}\)\(=\dfrac{1.2}{100.\left(101\right)}.\dfrac{\left(100,5\right)^2+0,75}{1,5^2+0,75}=\dfrac{2}{3}.\dfrac{\left(100^2+100+1\right)}{3.100.101}>\dfrac{2}{3}\left(đpcm\right)\)

17 tháng 5 2020

<=>2(x\(^2\)+8x+10)=0

<=>x\(^2\)+8x+10=0

<=>x\(^2\)+8x+16=26

<=>(x+4)\(^2\)=26

<=>x+4= \(\sqrt{26}\) hoặc -\(\sqrt{26}\)

<=>x=\(\sqrt{26}\)- 4 hoặc -\(\sqrt{26}\)-4

Vậy pt có tập nghiệm S={\(\sqrt{26}\)- 4 ;-\(\sqrt{26}\)- 4}

17 tháng 5 2020

b) 1x2+5x+61x2+5x+6+1x2+7x+121x2+7x+12+1x2+9x+201x2+9x+20+1x2+11x+301x2+11x+30=2

<=>\(\frac{1}{\left(x+2\right)\left(x+3\right)}\)+\(\frac{1}{\left(x+3\right)\left(x+4\right)}\)+\(\frac{1}{\left(x+4\right)\left(x+5\right)}\)+\(\frac{1}{\left(x+5\right)\left(x+6\right)}\)=2

<=>\(\frac{1}{x+2}\)-\(\frac{1}{x+3}\)+\(\frac{1}{x+3}\)-\(\frac{1}{x+4}\)+\(\frac{1}{x+4}\)-\(\frac{1}{x+5}\)+\(\frac{1}{x+5}\)-\(\frac{1}{x+6}\)=2

<=>\(\frac{1}{x+2}\)-\(\frac{1}{x+6}\)=2

<=>\(\frac{4}{\left(x+2\right)\left(x+6\right)}\)=\(\frac{2x^2+16x+24}{\left(x+2\right)\left(x+6\right)}\)

<=>4=2x\(^2\)+16x+24

<=>2x\(^2\)+16x+20=0

...

10 tháng 4 2017

5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

áp dụng bđ cosy

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> đpcm

6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

hay với mọi x thuộc R đều là nghiệm của bpt

7.áp dụng bđt cosy

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)

10 tháng 4 2017

1. (a-b)2>=0

=> a2+b2-2ab>=0

2. (a-b)2>=0

=> a2+b2>=2ab

=> \(\dfrac{a^2 +b^2}{2}\ge ab\)

3.Ta phích ra thôi,ta được : a2+2a < a2+2a+1

=> cauis trên đúng

22 tháng 3 2019

a. Ta có : \(\left(a-1\right)^2\ge0\forall a\)

\(\Rightarrow a^2-2a+1\ge0\\ \Rightarrow a^2+1\ge2a\left(đpcm\right)\)

b.

Theo câu a, ta có \(a^2+1\ge2a,\\ b^2+1\ge2b,\\ c^2+1\ge2c\)

\(\Rightarrow\frac{a}{a^2+1}\le\frac{a}{2a}=\frac{1}{2}\)

\(\frac{b}{b^2+1}\le\frac{b}{2b}=\frac{1}{2},\frac{c}{c^2+1}\le\frac{c}{2c}=\frac{1}{2}\)

\(\Rightarrow\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{3}{2}\)