K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2023

|\(x\)| = 1 ⇒ (|\(x\)|)2 = 1 ⇒ \(x^2\) = 1

Thay \(x^2\) = 1 vào biểu thức: M = (\(x^{2^{ }}\) + a)(\(x^2\) + b)(\(x^2\) + c) ta có:

M = (1 + a)(1 + b)(1 + c)

M = (1 + b + a + ab)(1 + c)

M = 1 + b + a + ab + c + bc + ac + abc

M = 1 + ( a + b + c) + (ab + bc + ac) + abc

M = 1 + 2 + (-5) +  3

M = (1+2+3) - 5

M = 1

19 tháng 12 2019

Ta có: \(f\left(0\right)=a.0^2+b.0+c=0+0+c=c\) mà \(f\left(0\right)=1\)\(\Rightarrow c=1\)

\(f\left(1\right)=a.1^2+b.1^2+c=a+b+1\)mà \(f\left(1\right)=2\)\(\Rightarrow a+b+1=2\)\(\Rightarrow a+b=1\)

\(f\left(2\right)=a.2^2+2.b+c=4a+2b+1\)mà \(f\left(2\right)=8\)\(\Rightarrow4a+2b+1=8\)\(\Rightarrow4a+2b=7\)\(\Rightarrow2\left(2a+b\right)=7\)\(\Rightarrow2a+b=3,5\)\(\Rightarrow a+\left(a+b\right)=3,5\)\(\Rightarrow a+1=3,5\)\(\Rightarrow a=2,5\)

Lại có: \(a+b=1\)\(\Rightarrow2,5+b=1\)\(\Rightarrow b=1-2,5=-1,5\)

Ta có: \(f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c=2,5.4+\left(-1.5\right).\left(-2\right)+1=10+3+1=14\)

6 tháng 9 2017

a) 227=(23)9=89

    318=(32)9=99

b)Vì 89<99 nên 227<318

6 tháng 9 2017

a, 227 = 23.9 = ( 23)9 = 89

318 = 32.9 = ( 32)9 = 99

b, Ta thấy 8 < 9 nên 227 < 318 

15 tháng 3 2018

A=x22x+3A=x22x1+4A=(x2+2x+1)+4A=(x+1)2+4Do(x+1)20x(x+1)20xA=(x+1)2+44xDấu “=” xảy ra khi: (x+1)2=0x+1=0x=1VậyA(Max)=4 khi x=1A=−x2−2x+3A=−x2−2x−1+4A=−(x2+2x+1)+4A=−(x+1)2+4Do(x+1)2≥0∀x⇒−(x+1)2≤0∀x⇒A=−(x+1)2+4≤4∀xDấu “=” xảy ra khi: (x+1)2=0x+1=0⇔x=−1VậyA(Max)=4 khi x=−1

B=x2+4x7B=x2+4x43B=(x24x+4)3B=(x2)23Do (x2)20x(x2)20xB=(x2)233xDấu “=” xảy ra khi: (x2)2=0x2=0x=2VậB(Max)=3 khi x=2

15 tháng 3 2018

A=x22x+3A=x22x1+4A=(x2+2x+1)+4A=(x+1)2+4Do(x+1)20x(x+1)20xA=(x+1)2+44xDấu “=” xảy ra khi: (x+1)2=0x+1=0x=1VậyA(Max)=4 khi x=1

14 tháng 4 2017

Ta có: \(\left\{{}\begin{matrix}x^3y^5z^7.x^3y^2z=2^7\\\dfrac{x^3y^5z^7}{x^3y^2z}=2^3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^6y^7z^8=2^7\\y^3z^6=2^3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}yz^2=2\\\left(xyz\right)^6.yz^2=2^7\end{matrix}\right.\)

\(\Rightarrow\left(xyz\right)^6=2^6\)

\(\Rightarrow\left\{{}\begin{matrix}xyz=2\\xyz=-2\end{matrix}\right.\)

20 tháng 4 2017

lớp 6 còn được chứ lớp 7 thì chịu