K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2017

a, Xét : n^5-n = n.(n^4-1)=n.(n^2-1).(n^2+1) = n.(n-1).(n+1).(n^2-4+5) = n.(n-1).(n+1).(n-2).(n+2) + 5.(n-1).n(n+1)

Ta thấy n-2;n-1;n-n+1;n+2 là 5 số nguyên liên tiếp nên có  1 số chia hết cho 2 và 1 số chia hết cho 5

=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 2.5 = 10 ( vì 2 và 5 là 2 số nguyên tố cùng nhau )

Lại có : n-1 và n là 2 số nguyên liên tiếp nên có 1 số chia hết cho 2 => 5.(n-1).n.(n+1) chia hết cho 10

=> n^5-n chia hết cho 10 => n^5-n có tận cùng là 0

=> n^5 và n có chữ số tận cùng bằng nhau

k mk nha

6 tháng 1 2017

tách hết ra đk đấy

26 tháng 1 2016

troi lanh em khong cha loi duoc

24 tháng 2 2019

                        Giải

Ta có:n5 - n = n(n4 - 1)

= n(n2 - 1)(n2 - 4 + 5)

= n(n2 - 1)(n2 - 4) + 5n(n2 - 1)

= (n - 2)(n - 1)n(n + 1)(n + 2) + 5(n - 1)n(n + 1)

Ta thấy (n - 2)(n - 1)n(n + 1)(n + 2) là 5 số tự nhiên liên tiếp nên sẽ đồng thời chia hết cho 2 và cho 5. Hay là (n - 2)(n - 1)n(n + 1)(n + 2) sẽ chia hết cho 10 (1)

Ta lại co (n - 1)n(n + 1) là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 2

=> 5(n - 1)n(n + 1) chia hết cho 10 (2)

Từ (1) và (2) => n5 - n chia hết cho 10 hay là co tận cùng là 0.

Vậy n5 và n luôn có chữ số tận cùng giống nhau.\(\left(đpcm\right)\)