K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2015

kho that day nghi mai khong ra

12 tháng 8 2015

mina hầu như lớp 9 trở xuống , ít người lớp 9 trở lên lắm

18 tháng 11 2022

A=(n^2-9)(n^2-1)

=(n-3)(n+3)(n-1)(n+1)

=(2k+1-3)(2k+1+3)(2k+1-1)(2k+1+1)

=2k(2k+2)(2k-2)(2k+4)

=16k(k+1)(k-1)(k+2)

Vì k;k+1;k-1;k+2là 4 số liên tiếp

nen k(k-1)(k+1)(k+2) chia hết cho 4!=24

=>A chia hết cho 384

1 tháng 6 2023

Phân tích: m12-m8-m4+1=(m2+1)2(m4+1)(m2-1)2

2 tháng 9 2015

1, n có dạng 2k+1(n\(\in N\)) Ta có: 

  \(n^2+4n+3=\left(2k+1\right)^2+4\left(2k+1\right)+3\) 

                                 \(=4k^2+4k+1+8k+4+3\) 

                                 \(=4k^2+12k+8\) 

                                 \(=4\left(k^2+3k+2\right)\) 

                                \(=4\left(k+1\right)\left(k+2\right)\) 

vì (k+1)(k+2) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\left(k+1\right)\left(k+2\right)\) chia hết cho 2  

 mà 4(k+1)(k+2)chia hết cho 4 

\(\Rightarrow n^2+4n+3\) chia hết cho 8 với mọi n  là số lẻ. 

2, ta có:  

        \(a^3+b^3+c^3=\left(a+b+c\right)\left(ab-bc-ac\right)+3abc\) 

 \(\Rightarrow a^3+b^3+c^3=3abc\) (vì a+b+c=0)

a+b+c=0

=>(a+b+c)3=0

=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0

=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0

=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc

Do a+b+c=0

=>a3+b3+c3=3abc(ĐPCM)

28 tháng 7 2015

Ta có:

n4+6n3+11n2+6n = n4+2n3+4n3+8n2+3n2+6n = (n4+2n3)+(4n3+8n2)+(3n2+6n) = n3(n+2)+4n2(n+2)+3n(n+2) 

= (n+2)(n3+4n2+3n) = (n+2)n(n2+3n) = n(n+1)(n+2)(n+3)

Vì tích 4 số tự nhiên liên tiếp luôn chia hết cho 24 nên n4+2n3+4n3+8n2+3n2+6n chia hết cho 24.