Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có :
ababab = ab . 10101
Do 10101 chia hết cho 3
=> ab . 10101 chia hết cho 3
hay ababab chia hết cho 3
ababab chia hết cho 3 nên ababab thuộc B ( 3 )
c ) Ta có :
165 + 215
( 24 )5 + 215
= 220 + 215
= 215 . 25 + 215
= 215 . ( 25 + 1 )
= 215 . 33 chia hết cho 33
Vậy 165 + 215 chia hết cho 33
a) Ta có : ababab = 10000 ab + 100 ab + ab = ( 10000+100+1 ) ab = 10101 ab
Vì 10101 \(⋮\)3 => 10101 ab \(⋮\)3
=> ababab \(⋮\)3
=> ababab là bội của 3 ( đpcm )
b) Ta có : \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.\left(2^5+1\right)=2^{15}.33\)
Vì \(33⋮33\)và \(2^{15}\in Z\)=> \(16^5+2^{15}⋮33\)( đpcm )
Vậy bài toán được chứng minh !
Chúc mng vui vẻ ❤️❤️❤️
Ta có :
ababab = ab . 10101
Do 10101 chia hết cho 3
=> ab . 10101 chia hết cho 3
hay ababab chia hết cho 3
ababab chia hết cho 3 nên ababab thuộc B ( 3 )
b ) Ta có :
165 + 215
( 24 )5 + 215
= 220 + 215
= 215 . 25 + 215
= 215 . ( 25 + 1 )
= 215 . 33 chia hết cho 33
Vậy 165 + 215 chia hết cho 33
a/
Tổng các chữ số của ababab là :
a+b+a+b+a+b = 3a+3b = 3.[a+b] chia hết cho 3
=> ababab chia hết cho3
b/
S=16^5+2^15=[2^4]^5+2^15=2^20+2^15=2^15. [2^5+1] = 2^15.33 chia hết cho 33
=> đpcm
a)
ababab=ab0000+ab00+ab
= abx10000+abx100+abx1
=abx(10000+100+1)
=abx10101
ta có 10101 chia hết cho 3
nên abx10101 chia hết cho3
suy ra ababab là bội của 3
Phần a có 2 cách nha bạn:
-C1:Ta thấy tổng các chữ số của ababab là :a+b+a+b+a+b =3a+3b=3x(a+b) chia hết cho 3
Vậy ababab chia hết cho 3
-C2:ta có :ababab=a x100000+b x10000+a x1000+b x100+a x10+b
=a x101010+b x10101
=3x(a x33670+b x3367) chia hết cho 3
Vậy ababab chia hết cho 3
a, Gọi d là ƯCLN\((12n+1,30n+2)\)\((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5(12n+1)⋮d\\2(30n+2)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Rightarrow(60n+5)-(60n+4)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy d = 1 để \(\frac{12n+1}{30n+2}\)là phân số tối giản với mọi số tự nhiên n
Câu b tự làm
\(b)\)\(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5=3^n\cdot10-2^{n-1}\cdot10\)
\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(ĐPCM\right)\)
Bội của 3 chứng tỏ ababab chia hết cho 3
mà số chia hết cho 3 phải có tổng các chữ số chia hết cho 3
Tổng các chữ số là :
a + b + a + b + a + b
= 3( a + b )
Vì 3 ( a + b ) chia hết cho 3
=> ababab chia hết cho 3
Ta có:ababab=ab0000+ab00+ab=ab.10000+ab.100+ab=ab.(10000+100+10)=ab.10101
Ta có: 10101 chia hết cho 3 và ab số tự nhiên
ab.10101 chia hết cho 3 hayababab chia hết cho 3
Vậy bài toán đã được chứng minh
Mọi người tk cho mình nha. Mình cảm ơn nhiều ^.< ( Cô bé tháng 1 )
1
a / \(57^{2011}=57^{4.502+3}=\left(57^4\right)^{502}.57^3=\left(...1\right)^{502}.\left(...3\right)=\left(...1\right)\times\left(...3\right)=\left(...3\right)\)
b/ \(93^{1999}=93^{4.499+3}=\left(93^4\right)^{499}.93^3=\left(...1\right)^{499}.\left(...7\right)=\left(...1\right).\left(...7\right)=\left(...7\right)\)
2
tự làm nha, phân tích N ra nhé
3
a
Để chứng minh 12n+1/30n+2 là phân số tối giản thì cần chứng tỏ 12n+1 và 30n+2 nguyên tố cùng nhau
Gọi ƯCLN(12n+1,30n+2)=d (d$\in$∈N)
=> 12n+1 chia hết cho d => 5(12n+1) chia hết cho d => 60n+5 chia hết cho d
30n+2 chia hết cho d => 2(30n+2) chia hết cho d => 60n+4 chia hết cho d
=> (60n+5)-(60n+4) chia hết cho d
=> 1 chia hết cho d
=> d∈Ư(1)={1}
=> d=1
=> ƯCLN(12n+1,30n+2)=1
Vậy 12n+1/30n+2 là phân số tối giản
b/
\(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.\left(2^5+1\right)=2^{15}.33\) chia hết cho 33
2.
\(N=\frac{-7}{10^{2005}}+\frac{-15}{10^{2006}}=\frac{-15}{10^{2005}}+\frac{8}{10^{2005}}+\frac{-7}{10^{2006}}-\frac{8}{10^{2006}}=\left(\frac{-15}{10^{2005}}+\frac{-7}{10^{2006}}\right)+\left(\frac{8}{10^{2005}}-\frac{8}{10^{2006}}\right)\)mà \(10^{2005}<10^{2006}\Rightarrow\frac{8}{10^{2005}}-\frac{8}{10^{2006}}>0\)
=> \(N>\frac{-15}{10^{2005}}+\frac{-7}{10^{2006}}=M\)
Vậy N > M
1) ababab là bội của 3 nên ababab chia hết cho 3
Tổng các chữ số : a + b +a +b+a+b = 3a+3b=3(a+b) \(⋮\)3
Vậy số trên chia hết cho 3
2) Ta có : \(1+3^2+3^4=91\)
\(\Rightarrow M=3^5+3^6+3^7+3^8+3^9+3^{10}=3^5\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)\)
\(=3^5\cdot91+3^6\cdot91=\left(3^5+3^6\right)91\)
\(\Leftrightarrow M⋮91\)
bài 2 :
M+ 3 mũ 5 +3 mũ 6 + 3 mũ 7 + 3 mũ 8 + 3 mũ 9 + 3 mũ 10. CMR M chia hết cho 91
mình đánh thiếu ở phần trên
a/ \(\overline{ababab}=\overline{10101}.\overline{ab}\) ta có \(\overline{10101}⋮3\Rightarrow\overline{ababab}⋮3\) nên \(\overline{ababab}\) là bội của 3
b/ gọi d là ước chung của tử và mẫu nên
\(12n+1⋮d\Rightarrow5\left(12n+1\right)=60n+5⋮d\)
\(30n+2⋮d\Rightarrow2\left(30n+2\right)=60n+4⋮d\)
\(\Rightarrow60n+5-60n-4=1⋮d\Rightarrow d=1\)
Tử và mẫu chỉ có ước chung là 1 nên phân số là tối giản
c/
\(S=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.33⋮33\)
b) Gọi d= ƯCLN(12n+1;30n+2)
=>12n+1chia hết cho d; 30n+2 chia hết cho d
=>5(12n+1)chia hết cho d; 2(30n+2) chia hết cho d
=> 5(12n+1)-2(30n+2) chia hết cho d
=> (60n+5)-(60n+4) chia hết cho d
=> 60n=5-60n-4 chia hết cho d
=>1 chia hết cho d
=> d = 1
=>(12n+1;30n+2) chia hết cho d
=> 12n+1/30n+2 là phân số tối giản
c) có S= 165+215
=(24)5+215
=220+215
=215+220-15+215
=215.220-15+215
=215.(220-15+1)
=215.(25+1)
=215.(32+1)
=215.33
mà 33 chia hết cho 33
=>215.33 chia hết cho 33
=>165+215 chia hết cho 33
=> S chia hết cho 33 (ĐPCM)