Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,A=3+32+33+34+...+31003A=32+33+34+35+31013A−A=2A=3101−3⇒2A+3=3101=34.25+1⇒n=25
1) Số số hạng là: \(\frac{2x-1-1}{2}+1=\frac{2x-2}{2}+1=\frac{2\left(x-1\right)}{2}+1=x-1+1=x\)
Tổng là \(\frac{\left(1+2x-1\right).x}{2}=225\)
\(\frac{2.x^2}{2}=225\)
x2=225
x=15
Đợi chút mình làm câu b. Mỏi tay quá
\(3a=3^2+3^3+3^4+3^5+...+3^{101}\)
\(2a=3a-a=3^{101}-3\)
\(\Rightarrow2a+3=3^{101}-3+3=3^{101}=3^{4n+1}\)
\(\Rightarrow4n+1=101\Rightarrow n=25\)
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
1. Ta có:
3A = 3^2 + 3^3+3^4+...+3^101
=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)
<=> 2A= 3^101-3
=> 2A +3 = 3^101
Mà 2A+3=3^n
=> 3^101 = 3^n => n=101
2. M=3+32+33+34+...+3100
=>3M=32+33+34+35+...+3101
=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé)
=> M=\(\frac{3^{101}-3}{2}\)
a) Ta co : 3101=(34)25 .3=8125.3
Bạn học đồng dư thức rồi thì xem:
Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)
=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8
=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)
Ma M=3101-3 chia hết cho 3 (2)
Từ (1) và (2) => M chia hết cho 12
b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)
=> 3101-3 +3 =3n
=> 3101=3n=> n = 101
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n
a , Ta có :
M = 3 + 32 + ... + 3100
= 3 . ( 1 + 3 ) + ... + 399 . ( 1 + 3 )
= 3 . 4 + ...... + 399 . 4
= 4 . ( 3 + ... + 399 ) \(⋮\)4
a , M = 3 + 32 + ... + 3100
= 1 . ( 3 + 32 ) + ... + 398 . ( 3 + 32 )
= 1 . 12 + ... + 398 . 12
= 12 . ( 1 + ... + 398 ) \(⋮\)12
3A = 3^2 + 3^3 + 3^4 + ... + 3^101
3A - A = ( 3^2 + 3^3 + 3^4 + .... + 3^101 ) - ( 3 + 3^2 + 3^3 + ... + 3^100 )
2A = 3^101 - 3
Ta có: 2A + 3 = 3^101 = 3^4 . 25 + 1
Vậy, n=25
\(a,A=3+3^2+3^3+3^4+...+3^{100}\\ 3A=3^2+3^3+3^4+3^5+3^{101}\\ 3A-A=2A=3^{101}-3\\ \Rightarrow2A+3=3^{101}=3^{4.25+1}\\ \Rightarrow n=25\)