Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a; \(\dfrac{7}{8}\) + \(x\) = \(\dfrac{4}{7}\)
\(x\) = \(\dfrac{4}{7}\) - \(\dfrac{7}{8}\)
\(x\) = \(\dfrac{32}{56}\) - \(\dfrac{49}{56}\)
\(x=-\) \(\dfrac{49}{56}\)
Vậy \(x=-\dfrac{49}{56}\)
b; 6 - \(x\) = - \(\dfrac{3}{4}\)
\(x\) = 6 + \(\dfrac{3}{4}\)
\(x\) = \(\dfrac{24}{4}+\dfrac{3}{4}\)
\(x=\dfrac{27}{4}\)
Vậy \(x=\dfrac{27}{4}\)
c; \(\dfrac{1}{-5}\) + \(x\) = \(\dfrac{3}{4}\)
\(x\) = \(\dfrac{3}{4}\) + \(\dfrac{1}{5}\)
\(x=\dfrac{15}{20}\) + \(\dfrac{4}{20}\)
\(x=\dfrac{19}{20}\)
Vậy \(x=\dfrac{19}{20}\)
Bài 1:
d; - 6 - \(x\) = - \(\dfrac{3}{5}\)
\(x\) = - 6 + \(\dfrac{3}{5}\)
\(x=-\dfrac{30}{5}\) + \(\dfrac{3}{5}\)
\(x=-\dfrac{27}{5}\)
Vậy \(x=-\dfrac{27}{5}\)
e; - \(\dfrac{2}{6}\) + \(x\) = \(\dfrac{5}{7}\)
\(x\) = \(\dfrac{5}{7}\) + \(\dfrac{2}{6}\)
\(x\) = \(\dfrac{15}{21}\) + \(\dfrac{1}{3}\)
\(x=\dfrac{15}{21}\) + \(\dfrac{7}{21}\)
\(x=\dfrac{22}{21}\)
Vậy \(x=\dfrac{22}{21}\)
f; - 8 - \(x\) = - \(\dfrac{5}{3}\)
\(x\) = \(-\dfrac{5}{3}\) + 8
\(x\) = \(\dfrac{-5}{3}\) + \(\dfrac{24}{3}\)
\(x\) = \(\dfrac{-19}{3}\)
Vậy \(x=-\dfrac{19}{3}\)
\(/x-\frac{1}{2}/=\frac{1}{3}\\ =>\orbr{\begin{cases}x-\frac{1}{2}=\frac{1}{3}\\x-\frac{1}{2}=-\frac{1}{3}\end{cases}}\\ =>\orbr{\begin{cases}x=\frac{1}{3}+\frac{1}{2}\\x=-\frac{1}{3}+\frac{1}{2}\end{cases}}\\ =>\orbr{\begin{cases}x=\frac{5}{6}\\x=\frac{1}{6}\end{cases}}\)
\(a,|x-\frac{1}{2}|=\frac{1}{3}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{1}{3}\\x-\frac{1}{2}=-\frac{1}{3}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{6}\\x=\frac{1}{6}\end{cases}}}\)
\(b,\frac{14}{15}:\frac{9}{10}=x:\frac{3}{7}\)
\(\frac{28}{27}=x:\frac{3}{7}\)
\(x=\frac{4}{9}\)
\(\text{a, 3(x+1)+4x=10}\)
\(\Rightarrow3x+3+4x=10\)
\(\Rightarrow7x+3=10\)
\(\Rightarrow7x=10-3=7\)
\(\Rightarrow x=1\)
c, x+1/10+x+2/9=x+3/8+x+4/7
=> (x+1/10 +1) +(x+2/9 +1)= ( x+3/8 +1) +(x+4/7 +1)
=> x+11/10 + x+11/9 = x+11/8 + x+11/7
...............
a) \(3\left(x+1\right)+4x=10\)
\(\Rightarrow3x+3+4x=10\)
\(\Rightarrow3x+4x=10-3\)
\(\Rightarrow7x=7\)
\(\Rightarrow x=7\)
a
3./x/= x+12
trường hợp1
x>=0
ta có
3x = x+12
2x=12
x=6 (thảo mãn)
trường hợp 2
x<=0
-3x = x+12
-4x=12
x=-3 (thỏa mãn)
vậy x=6 và x=-3
b
/x/= 2x-1
trường hợp 1
x>=0 ta có
x= 2x-1
x = 1 (thỏa mãn)
trường hợp 2
x<=0 ta có
-x= 2x-1
3x = 1
x=1/3 (loại)
vậy pt có nghiệm x=1
a) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
=> \(\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)
=> \(\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}+\frac{x+1}{12}=0\)
=> \(\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)
=> x + 1 = 0
=> x = -1
b) \(\frac{x-1}{2020}+\frac{x-2}{2019}-\frac{x-3}{2018}=\frac{x-4}{2017}\)
=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-2}{2019}-1\right)-\left(\frac{x-3}{2018}-1\right)=\left(\frac{x-4}{2017}-1\right)\)
=> \(\frac{x-2021}{2020}+\frac{x-2021}{2019}-\frac{x-2021}{2018}=\frac{x-2021}{2017}\)
=> \(\left(x-2021\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)
=> x - 2021 = 0
=> x = 2021
c) \(\left(\frac{3}{4}x+3\right)-\left(\frac{2}{3}x-4\right)-\left(\frac{1}{6}x+1\right)=\left(\frac{1}{3}x+4\right)-\left(\frac{1}{3}x-3\right)\)
=> \(\frac{3}{4}x+3-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}x+3\)
=> \(-\frac{1}{12}x+6=7\)
=> \(-\frac{1}{12}x=1\)
=> x = -12
`4.(3-x)^10=9(3-x)^8`
`=>(3-x)^{8}(4(3-x)^2-9)=0`
`=>` $\left[ \begin{array}{l}3-x=0\\(3-x)^2=\dfrac{9}{4}\end{array} \right.$
`=>` $\left[ \begin{array}{l}x=3\\3-x=\dfrac{3}{2}\\3-x=-\dfrac{3}{2}\end{array} \right.$
`=>` $\left[ \begin{array}{l}x=3\\x=\dfrac{3}{2}\\x=\dfrac{9}{2}\end{array} \right.$
Vậy `x=3` hoặc `x=3/2` hoặc `x=9/2`
`b,(x-1)^{x+3}=(x-1)^{x+1}`
`=>(x-1)^{x+1}[(x-1)^2-1]=0`
`=>` $\left[ \begin{array}{l}x-=1\\x-=-1\end{array} \right.$
`=>` $\left[ \begin{array}{l}x=2\\x=1\\x=0\end{array} \right.$
Vậy `x=0` hoặc `x=1` hoặc `x=2`
good luôn bn