Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7};x+y+z=56\)
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.2=8\\y=4.5=20\\z=4.7=28\end{matrix}\right.\)
b) \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\left(1\right);2x-y=5,5\)
\(\left(1\right)\Rightarrow\dfrac{2x-y}{1,1.2-1,3}=\dfrac{5,5}{0,9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=1,1.\dfrac{5,5}{0,9}=\dfrac{6,05}{0,9}\\y=1,3.\dfrac{5,5}{0,9}=\dfrac{7,15}{0,9}\\z=\dfrac{1,4}{1,1}.x=\dfrac{1,4}{1,1}.\dfrac{6,05}{0,9}=\dfrac{8,47}{0,99}\end{matrix}\right.\)
d) \(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5};xyz=-30\)
\(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5}=\dfrac{xyz}{2.3.5}=\dfrac{-30}{30}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=3.\left(-1\right)=-3\\z=5.\left(-1\right)=-5\end{matrix}\right.\)
a) �2=�5=�7;�+�+�=562x=5y=7z;x+y+z=56
�2=�5=�7=�+�+�2+5+7=5614=42x=5y=7z=2+5+7x+y+z=1456=4
⇒{�=4.2=8�=4.5=20�=4.7=28⇒⎩⎨⎧x=4.2=8y=4.5=20z=4.7=28
b) �1,1=�1,3=�1,4(1);2�−�=5,51,1x=1,3y=1,4z(1);2x−y=5,5
(1)⇒2�−�1,1.2−1,3=5,50,9(1)⇒1,1.2−1,32x−y=0,95,5
⇒⎩⎨⎧x=1,1.0,95,5=0,96,05y=1,3.0,95,5=0,97,15z=1,11,4.x=1,11,4.0,96,05=0,998,47
d) �2=�3=�5;���=−302x=3x=5z;xyz=−30
�2=�3=�5=���2.3.5=−3030=−12x=3x=5z=2.3.5xyz=30−30=−1
⇒{�=2.(−1)=−2�=3.(−1)=−3�=5.(−1)=−5⇒⎩⎨⎧x=2.(−1)=−2y=3.(−1)=−3z=5.(−1)=−5
a, Ta có : \(x:y:z=5:3:4\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=-\frac{126}{7}=-18\)
\(x=-90;y=-54;z=-72\)
b, \(5x=2y;3y=5z\Rightarrow\frac{x}{2}=\frac{y}{5};\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=-\frac{970}{10}=-97\)
\(x=-194;y=-485;z=-291\)
a, \(9x=4y\Rightarrow\frac{x}{4}=\frac{y}{9}=\frac{y-x}{9-4}=\frac{-25}{5}=-5\)
\(\Rightarrow\hept{\begin{cases}x=-5\times4=-20\\y=-5\times9=-45\end{cases}}\)
b,\(\frac{x}{2}=\frac{y}{5}=\frac{3x}{6}=\frac{2y}{10}=\frac{3x-2y}{6-10}=\frac{20}{-4}=-5\)
\(\Rightarrow\hept{\begin{cases}x=-5\times2=-10\\y=-5\times5=-25\end{cases}}\)
c,\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{9}=\frac{y^2}{25}=\frac{x^2-y^2}{9-25}=\frac{-64}{-16}=4\)
\(\Rightarrow\hept{\begin{cases}x^2=9\times4=36\\y^2=25\times4=100\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm6\\y=\pm10\end{cases}}\)
Ta thấy \(\frac{x}{3}=\frac{y}{5}\)nên x,y cùng dấu
Vậy ....................................................
d, \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\);\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{15}=\frac{z}{18}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{18}\)từ đó bạn tự giải nha
a ) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x+z=18\)
Áp dụng t/c dãy tỏ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)
b ) \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\) và \(y-x=39\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{y-x}{-6-5}=\frac{39}{-11}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{39}{-11}\\\frac{y}{-6}=\frac{39}{-11}\\\frac{z}{7}=\frac{39}{-11}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{195}{11}\\y=-\frac{234}{11}\\z=\frac{273}{11}\end{cases}}\)
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=5\Rightarrow x=10\\\frac{y}{3}=5\Rightarrow y=10\end{cases}}\)
Vậy x = 10, y = 10
b, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{8}=\frac{2x+3y}{2.7+3.8}=\frac{4}{60}=\frac{1}{12}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=\frac{1}{12}\Rightarrow x=\frac{7}{12}\\\frac{y}{8}=\frac{1}{12}\Rightarrow y=\frac{2}{3}\end{cases}}\)
Vậy ...
\(c,3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{3}=\frac{x-y}{4-3}=\frac{1}{1}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=1\Rightarrow x=4\\\frac{y}{3}=1\Rightarrow y=3\end{cases}}\)
Vậy ....
d,Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{x-y}{3-4}=\frac{48}{\left(-1\right)}=\left(-48\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\left(-48\right)\Rightarrow x=-144\\\frac{y}{4}=\left(-48\right)\Rightarrow y=-192\end{cases}}\)
Vậy ...
Dựa vào tỉ số bằng nhau ta đc:
a)\(3x-2y=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau ta đc:
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{16}{-1}=-16\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=-16\\\frac{y}{3}=-16\end{cases}\Rightarrow}\hept{\begin{cases}x=-32\\y=-48\end{cases}}\)
Các câu kia tg tự nha
c)
\(\frac{4}{x}=\frac{6}{y}=\frac{x}{6}=\frac{y}{4}\) và x + y = 5
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{6}=\frac{y}{4}\Rightarrow\frac{x+y}{6+4}=\frac{5}{10}=\frac{1}{2}\)
\(\frac{x}{6}=\frac{1}{2}\Rightarrow x=\frac{1.6}{2}=3\)
\(\frac{y}{4}=\frac{1}{2}\Rightarrow y=\frac{1.4}{2}=2\)
Vậy...
a) \(\left\{{}\begin{matrix}3x=4y\\x+y=-56\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}3x-4y=0\\x+y=-56\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}3x-4y=0\\4x+4y=-224\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}7x=-224\\x+y=-56\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{-224}{7}=-32\\x+y=-56\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-32\\-32+y=-56\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-32\\y=-24\end{matrix}\right.\) vậy \(x=-32;y=-24\)
b/ Theo đề ta có: \(\dfrac{x}{4}=\dfrac{x}{5}\Rightarrow\dfrac{x}{12}=\dfrac{x}{15}\)
\(\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{12}=\dfrac{y}{8}\)
\(\Rightarrow\dfrac{x}{12}=\dfrac{y}{8}=\dfrac{z}{15}\) và \(x+y-z=10\)
Áp dụng t/c của dãy tỉ số = nhau ta có:
\(\dfrac{x}{12}=\dfrac{y}{8}=\dfrac{z}{15}=\dfrac{x+y-z}{12+8-15}=\dfrac{10}{5}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot12=24\\y=2\cdot8=16\\z=2\cdot15=30\end{matrix}\right.\)
Vậy.............