Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Đặt \(A=3-3^2+3^3-3^4+...+3^{95}-3^{96}\)
\(3A=3^2-3^3+3^4-3^5+...+3^{96}-3^{97}\)
\(3A+A=\left(3^2-3^3+3^4-3^5+...+3^{96}-3^{97}\right)+\left(3-3^2+3^3-3^4+...+3^{95}-3^{96}\right)\)
\(4A=-3^{97}+3\)
\(A=\frac{-3^{97}+3}{4}\)
b)tương tự như câu a
c)\(\left(100-1^2\right)\left(100-2^2\right)\left(100-3^2\right).....\left(100-99^2\right)\)
\(=\left(10^2-1^2\right)\left(10^2-2^2\right)\left(10^2-3^2\right)....\left(10^2-10^2\right)...\left(10^2-99^2\right)\)
\(=\left(10^2-1^2\right)\left(10^2-2^2\right)\left(10^2-3^2\right)...0...\left(10^2-99^2\right)\)
=0
A = 1 + 3 + 32 + 3 3 + 3 4 + ... + 3100
3A = 3 + 32 + 3 3 + 3 4 + 35 + ... + 3101
3A - A = ( 3 + 32 + 3 3 + 3 4 + 35 + ... + 3101 )
- ( 1 + 3 + 32 + 3 3 + 3 4 + ... + 3100 )
2A = 3 101 - 1
A = \(\frac{3^{101}-1}{2}\)
B = 1 + 2 + 2 2 + 2 3 + ... + 2 100
2B = 2 + 2 2 + 2 3 + 24 + ... + 2101
2B - B = ( 2 + 2 2 + 2 3 + 24 + ... + 2101 )
- ( 1 + 2 + 2 2 + 2 3 + ... + 2 100 )
B = 2 101 - 1
Sửa đề:
\(A=3+3^2+3^3+...+3^{100}\\ A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\\ A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\\ A=4\left(3+3^3+...+3^{99}\right)\)
\(\Rightarrow A⋮4\)(ĐPCM)
a, A = 1 + 3 + 3\(^{^2}\) + .... + 3\(^{100}\)
3A = 3 + 3\(^2\) + ..... + 3\(^{101}\)
Lấy 3A - A
\(\Rightarrow\) 2A = 3\(^{101}\) - 1
A = \(\frac{3^{101}-1}{2}\)
b, Áp dụng kiến thức câu a
\(A=2+2^2+2^3+...+2^{99}+2^{100}\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{100}+2^{101}\)
\(\Rightarrow A=2^{101}-2\)
\(B=3+3^2+3^3+...+3^{99}+3^{100}\)
\(\Rightarrow3B=3^2+3^3+3^4+...+3^{100}+3^{101}\)
\(\Rightarrow2B=3^{101}-3\)
\(\Rightarrow B=\dfrac{3^{101}-3}{2}\)
\(A=1+3+3^2+3^3+...+3^{100}\)
\(3A=\left(1+3+3^2+3^3+...+3^{100}\right).3\)
\(3A=3+3^2+3^3+...+3^{101}\)
\(3A-A=\left(3+3^2+3^3+...+3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)
\(2A=3^{101}-1\)
\(A= 1+3+3^2+3^3+...+3^{100} \)
\(3A=3+3^2+...+3^{101}\)
\(3a-a=(3+3^2+...+3^{101}-(1+3+3^2+...+2^{100})\)
\(2A=3^{101}-1\)
\({A=2^{101}-1}/{2}\)
\(=> B-A = 3^{100}/2 - 3^{101}-1/2\)
A=3+32+33+34+....+3100Cmr A chia hết cho 100
Đề sai rùi
vỡi~~~~~~~~~
Đặt A=3+32+33+34+.....+3100
A=(3+32)+(33+34)+.....+(399+3100) (có 50 số hạng)
A=3.(1+12)+3.(13+14)+.....+3.(199.1100)
A=3.2+3.2+....+3.2
A=6+6+6...+6 (50 số)
A=60.50=300 =>300 chia hết cho 100
Vậy A chia hết cho 100
a) Ta có: \(A=1+3+3^2+...+3^{99}+3^{100}\)
=> \(3A=3+3^2+3^3+...+3^{100}+3^{101}\)
=> \(3A-A=\left(3+3^2+...+3^{101}\right)-\left(1+3+...+3^{100}\right)\)
<=> \(2A=3^{101}-1\)
=> \(A=\frac{3^{101}-1}{2}\)
b) Ta có: \(B=1+4+4^2+...+4^{100}\)
=> \(4B=4+4^2+4^3+...+4^{101}\)
=> \(4B-B=\left(4+4^2+...+4^{101}\right)-\left(1+4+...+4^{100}\right)\)
<=> \(3B=4^{101}-1\)
=> \(B=\frac{4^{101}-1}{3}\)
\(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3\left(3+3^2+3^3+...+3^{100}\right)\)
\(=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(=3^{101}-3\)
\(\Rightarrow2A=3^{101}-3\)
\(\Rightarrow A=\dfrac{3^{101}-3}{2}\)