Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Đặt \(A=3-3^2+3^3-3^4+...+3^{95}-3^{96}\)
\(3A=3^2-3^3+3^4-3^5+...+3^{96}-3^{97}\)
\(3A+A=\left(3^2-3^3+3^4-3^5+...+3^{96}-3^{97}\right)+\left(3-3^2+3^3-3^4+...+3^{95}-3^{96}\right)\)
\(4A=-3^{97}+3\)
\(A=\frac{-3^{97}+3}{4}\)
b)tương tự như câu a
c)\(\left(100-1^2\right)\left(100-2^2\right)\left(100-3^2\right).....\left(100-99^2\right)\)
\(=\left(10^2-1^2\right)\left(10^2-2^2\right)\left(10^2-3^2\right)....\left(10^2-10^2\right)...\left(10^2-99^2\right)\)
\(=\left(10^2-1^2\right)\left(10^2-2^2\right)\left(10^2-3^2\right)...0...\left(10^2-99^2\right)\)
=0
a)A=1+2+22+...+2100
=>2A=2+22+23+...2101
=>2A-A=(2+22+23+...+2101)-(1+2+22+...+2100)
=>A=2101-1
b)B=3+32+33+...+3100
=>3B=32+33+...+3101
=>3B-B=(32+33+...+3101)-(3+32+...3100)
=>2B-B=3101-3
=>B=(3101-3):2
c)C=1+2+4+8+16+...+8192
=>C=1+2+22+23+...213
=>2C=2+22+23+...+214
=>2C-C=(2+22+...+214)-(2+22+...+213)
=>C=214-2
d)D=4+42+43+...+4n
=>4D=42+43+...+4n+1
=>4D-D=(42+43+...+4n+1)-(4+42+...+4n)
=>3D=4n+1-4
=>D=(4n+1-4):3
a) \(A=2+2^2+2^3+2^4+.....+2^{98}+2^{99}\)
\(\Rightarrow2A=2^2+2^3+2^4+2^5.....+2^{99}+2^{100}\)
\(\Rightarrow2A-A=\left(2^2+2^3+2^4+2^5.....+2^{99}+2^{100}\right)-\left(2+2^2+2^3+2^4+.....+2^{98}+2^{99}\right)\)
\(\Rightarrow A=2^{100}-2\)
b) \(B=2+2^4+2^7+......+2^{97}+2^{100}\)
\(\Rightarrow2^3B=2^4+2^7+......+2^{100}+2^{103}\)
\(\Rightarrow8.B-B=\left(2^4+2^7+......+2^{100}+2^{103}\right)-\left(2+2^4+2^7+......+2^{97}+2^{100}\right)\)
\(\Rightarrow7B=2^{103}-2\)
\(\Rightarrow B=\dfrac{2^{103}-2}{7}\)
a, A = 1 + 3 + 3\(^{^2}\) + .... + 3\(^{100}\)
3A = 3 + 3\(^2\) + ..... + 3\(^{101}\)
Lấy 3A - A
\(\Rightarrow\) 2A = 3\(^{101}\) - 1
A = \(\frac{3^{101}-1}{2}\)
b, Áp dụng kiến thức câu a
A = 1 + 3 + 32 + 3 3 + 3 4 + ... + 3100
3A = 3 + 32 + 3 3 + 3 4 + 35 + ... + 3101
3A - A = ( 3 + 32 + 3 3 + 3 4 + 35 + ... + 3101 )
- ( 1 + 3 + 32 + 3 3 + 3 4 + ... + 3100 )
2A = 3 101 - 1
A = \(\frac{3^{101}-1}{2}\)
B = 1 + 2 + 2 2 + 2 3 + ... + 2 100
2B = 2 + 2 2 + 2 3 + 24 + ... + 2101
2B - B = ( 2 + 2 2 + 2 3 + 24 + ... + 2101 )
- ( 1 + 2 + 2 2 + 2 3 + ... + 2 100 )
B = 2 101 - 1