Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gì mà dài dữ vậy
bài 1 bấm máy là xong
bài 2 ví dụ một phần nhé (x+1)(x+3)(x+5)(x+7)=-15
\(\Rightarrow\)nhóm 1 với 4 ;2 với 3 ta được (\(x^2\)+8x+7)(\(x^2\)+8x+15)=-15
Đặt x2 +8x+11 =a \(\Rightarrow\)(a-4)(a+4)=-15\(\Rightarrow\)a2 -16=-15
đến đây tự làm tiếp nhé phần khác làm tương tự
\(\sqrt{1-x-2x^2}=\sqrt{\left(1+x\right)\left(1-2x\right)}\le\dfrac{1+x-2x+1}{2}=\dfrac{-x+2}{2}\)
(AM-GM)
do đó \(A\le\dfrac{x}{2}+\dfrac{-x+2}{2}=1\)
Dấu = xảy ra khi 1+x=1-2x <=> x=0 (tmđk)
a) Đặt \(t=\sqrt{2x^2-3x+5}\ge0\) thì
\(2t=t^2-11\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1+2\sqrt{3}\\t=1-2\sqrt{3}\end{matrix}\right.\)
Vì \(t\ge0\) nên \(t=1+2\sqrt{3}\)
\(\Rightarrow\sqrt{2x^2-3x+5}=1+2\sqrt{3}\)
\(\Leftrightarrow2x^2-3x+5=13-4\sqrt{3}\)
\(\Leftrightarrow2x^2-3x-8+4\sqrt{3}=0\)
Giải pt trên tìm được x
c) ĐK: \(x\ge0\)
Đặt \(a=\sqrt{x}\ge0;b=\sqrt{x+3}\ge0\)
pt trên đc viết lại thành
\(2b^2+2ab=4\left(a+b\right)\)
\(\Leftrightarrow\left(b-2\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=2\\a=-b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2\\\sqrt{x}=-\sqrt{x+3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=x+3\end{matrix}\right.\)
Vậy pt có 1 nghiệm duy nhất x = 1.
b) ĐK: tự làm
Ta có \(\left(x+5\right)\left(2-x\right)=-x\left(x+3\right)+10\)
Đặt \(a=\sqrt{x}\ge0;b=\sqrt{x+3}\ge0\)
pt trên đc viết lại thành
\(-a^2b^2+10=3ab\)
\(\Leftrightarrow-a^2b^2-3ab+10=0\) (*)
Đặt \(t=ab\ge0\) thì (*) \(\Rightarrow-t^2-3t+10=0\)
\(\Leftrightarrow\left[{}\begin{matrix}ab=t=2\\ab=t=-5\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x\left(x+3\right)}=2\)
Bạn tự làm tiếp nhé
chỉ biết cách làm mấy dạng căn trong căn như vầy là phá từ căn nhỏ nhất lên bằng cách phân tích biểu thức trong căn đó thành dạng bình phương 1 số.
\(\sqrt{53-20\sqrt{4+\sqrt{9+4\sqrt{2}}}}\)
\(=\sqrt{53-20\sqrt{4+\sqrt{\left(8+2\cdot2\sqrt{2}+1\right)}}}\)
\(=\sqrt{53-20\sqrt{4+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)
\(=\sqrt{53-20\sqrt{4+\left|2\sqrt{2}+1\right|}}\)
\(=\sqrt{53-20\sqrt{5+2\sqrt{2}}}\)
= { \(5+2\sqrt{2}\) bằng bao nhiêu bình phương không biết => không làm được, hóng người trả lời câu này cả buổi để tham khảo, nhưng chả thấy ai hết, khả năng của t chỉ được thế thôi , xin lỗi nhé}
Bài này chắc g.viên dạy của tớ cho sai đề bạn ạ:))...Dù sao cũng cảm ơn bạn nhiều ạ:)))
a) \(\sqrt{x-3}\) xác định
\(\Leftrightarrow x-3\ge0\)
\(\Leftrightarrow x\ge3\)
Vậy..
b) \(\sqrt{3-2x}\) xác định
\(\Leftrightarrow3-2x\ge0\)
\(\Leftrightarrow x\le-\dfrac{3}{2}\)
Vậy..
c) \(\sqrt{4x^2-1}\) xác định
\(\Leftrightarrow4x^2-1\ge0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}2x-1\ge0\\2x+1\ge0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ge\dfrac{-1}{2}\end{matrix}\right.\)\(\Rightarrow x\ge\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}2x-1\le0\\2x+1\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\x\le\dfrac{-1}{2}\end{matrix}\right.\) \(\Rightarrow x\le\dfrac{-1}{2}\)
Vậy ...
d) \(\sqrt{3x^2+2}\) xác định
\(\Leftrightarrow3x^2+2\ge0\)
mà \(3x^2\ge0\)
\(\Rightarrow3x^2+2>0\)
Vậy...
e) \(\sqrt{2x^2+4x+5}\) xác định
\(\Leftrightarrow2x^2+4x+5\ge0\)
mà \(2x^2+4x\ge0\)
\(2x\left(x+2\right)\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}2x\ge0\\x+2\ge0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge0\\x\ge-2\end{matrix}\right.\)\(\Rightarrow x\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}2x\le0\\x+2\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\le0\\x\le-2\end{matrix}\right.\)\(\Rightarrow x\le-2\)
\(\Rightarrow2x^2+4x+5>0\)
Vậy...
( Câu này không chắc lắm nha )
Bài 2: Tách sẵn ra cho bạn luôn nhé, không thì bạn nhấn máy tính ra cũng được :v
a) \(-\dfrac{7}{9}\sqrt{\left(-27\right)^2+6\sqrt{1}}\)
\(=-\dfrac{7}{9}\sqrt{\left(-3\right)^2.\left(-9\right)^2+6}\)
\(=\dfrac{-7}{9}\sqrt{735}\)
\(=\dfrac{-7}{9}\sqrt{49.15}\)
\(=\dfrac{-49\sqrt{15}}{9}\)
b) \(\sqrt{49}\sqrt{12^2}+\sqrt{256}:\sqrt{8^2}\)
\(=84+2=86\)
c)\(\sqrt{\left(\sqrt{3-1}\right)^2-\sqrt{\left(\sqrt{3+1}\right)^2}}\)
\(=\sqrt{2-2}\)
= 0
Điều kiện: \(\left\{\begin{matrix}x\ge0\\y\ge1\\z\ge2\end{matrix}\right.\)
Ta có: \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+y+z}{2}\)
\(\Leftrightarrow-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}+x+y+z=0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
\(\Leftrightarrow\left\{\begin{matrix}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
\(\Rightarrow x_0^2+y_0^2+z_0^2=1^2+2^2+3^2=14\)