Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x+0,25=\dfrac{5}{4}\\ x+\dfrac{1}{4}=\dfrac{5}{4}\\ x=\dfrac{5}{4}-\dfrac{1}{4}\\ x=1\\ b,\left(3-2x\right)-3=3\\ 3-2x=3+3\\ 3-2x=6\\ 2x=3-6\\ 2x=-3\\ x=-\dfrac{3}{2}\\ c,\left(x-1\right)^5=-32\\ \left(x-1\right)^5=\left(-2\right)^5\\ \Rightarrow x-1=-2\\ x=-2+1\\ x=-1\\ d,0,2:\dfrac{6}{5}=\dfrac{2}{3}:\left(6x+7\right)\\ \dfrac{1}{5}:\dfrac{6}{5}=\dfrac{1}{9}x+\dfrac{2}{21}\\ \dfrac{1}{9}x+\dfrac{2}{21}=\dfrac{1}{6}\\ \dfrac{1}{9}x=\dfrac{1}{6}-\dfrac{2}{21}\\ \dfrac{1}{9}x=\dfrac{1}{14}\\ x=\dfrac{1}{14}:\dfrac{1}{9}\\ x=\dfrac{9}{14}\)
Các câu sau làm tương tự nhé! ( mỏi tay lắm)
e, Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x-y}{3-4}=\dfrac{12}{-1}=-12\\ \Rightarrow\left\{{}\begin{matrix}x=-12\cdot3=-36\\y=-12\cdot4=-48\end{matrix}\right.\)
g, Ta có : \(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}=\dfrac{y}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{2\cdot38}{2}=38\\y=2\cdot21=42\end{matrix}\right.\)
H, Thiếu đề.
Tiện tay làm luôn
a) (x-5)x+2015 - (x-5)x+2014 =0
(x-5)x+2014(x-5 -1) =0
+ x -5 =0 => x =5
+ x -6 =0 => x =6
Vậy x = 5 hoặc x =6
a: (x-3)2=49
=>x-3=7 hoặc x-3=-7
=>x=10 hoặc x=-4
b: \(\left(x^4\right)^2=\dfrac{x^{12}}{x^5}\)
\(\Leftrightarrow x^8-x^7=0\)
\(\Leftrightarrow x^7\left(x-1\right)=0\)
=>x=0 hoặc x=1
c: \(\Leftrightarrow x^{10}-25x^8=0\)
\(\Leftrightarrow x^8\left(x^2-25\right)=0\)
\(\Leftrightarrow x^8\left(x-5\right)\left(x+5\right)=0\)
hay \(x\in\left\{0;5;-5\right\}\)
\(3x\left(x-1\right)+5\left(2-x\right)=3x^2-7x+6\) \(6\)
<=> \(3x^2-3x+10-5x=3x^2-7x+6\)
<=> \(-x=-4\)
<=> \(x=4\)
\(\left(x+2\right)^2=\frac{1}{2}-\frac{1}{3}\)
<=> \(\left(x+2\right)^2=\frac{1}{6}\)
<=> \(\hept{\begin{cases}x+2=\sqrt{\frac{1}{6}}\\x+2=-\sqrt{\frac{1}{6}}\end{cases}}\)
<=> \(\hept{\begin{cases}x=\sqrt{\frac{1}{6}}-2\\x=-\sqrt{\frac{1}{6}}-2\end{cases}}\)
2) a) \(\frac{1}{27^{11}}=\frac{1}{\left(3^3\right)^{11}}=\frac{1}{3^{33}}\)
\(\frac{21}{81^8}=\frac{21}{\left(3^4\right)^8}=\frac{21}{3^{32}}=\frac{21.3}{3^{33}}=\frac{63}{3^{33}}>\frac{1}{3^{33}}\)
=> \(\frac{21}{81^8}>\frac{1}{27^{11}}\)
b) Rõ ràng : 399 < 1121 => \(\frac{1}{399}>\frac{1}{11^{21}}\)
a) \(\left(\frac{1}{3}-\frac{5}{6}x\right)^3=\frac{5}{6}-\frac{21}{54}\)=> \(\left(\frac{1}{3}-\frac{5}{6}x\right)^3=\frac{24}{54}=\frac{4}{9}\)
=> \(\frac{1}{3}-\frac{5}{6}x=\sqrt[3]{\frac{4}{9}}\) => \(\frac{5}{6}x=1-\sqrt[3]{\frac{4}{9}}\)
=> x = \(\frac{6}{5}-\frac{6}{5}.\sqrt[3]{\frac{4}{9}}\)
b) => \(\frac{1}{13}\left(\frac{1}{2}x-1\right)^4=\frac{1}{12}-\frac{1}{16}=\frac{1}{48}\)
=> \(\left(\frac{1}{2}x-1\right)^4=\frac{13}{48}\)
=> \(\frac{1}{2}x-1=\sqrt[4]{\frac{13}{48}}\) hoặc \(\frac{1}{2}x-1=-\sqrt[4]{\frac{13}{48}}\)
=> \(x=2+2\sqrt[4]{\frac{13}{48}}\) hoặc \(x=2-2\sqrt[4]{\frac{13}{48}}\)
a)\(\frac{-11}{12}.x+0,25=5\)
\(\Rightarrow-\frac{11}{12}.x=5-0,25=\frac{19}{4}\)
\(\Rightarrow-\frac{11}{12}.x=\frac{19}{4}\)
\(\Rightarrow x=\frac{-57}{11}\)
b)\(\left(x-1\right)^5=-32=-2^5\)
\(\Rightarrow\left(x-1\right)=-2\)
\(\Rightarrow x=-2+1=-1\)
a ) - 11 / 12 x X + 0 , 25 = 5
- 11 / 12 x X = 4 , 75
X = - 57 / 11
b ) ( x - 1 ) 5 = -32
( x - 1 ) 5 = ( - 2 ) 5
=> x - 1 = - 2
x = -2 + 1
x = -1