Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(9\left(x+5\right)^2-4\left(x-7\right)^2=9\left(x^2+10x+25\right)-4\left(x^2-14x+49\right)\)
\(=9x^2+90x+225-4x^2+56x-196=5x^2+146x+29\)
\(=\left(5x^2+145x\right)+\left(x+29\right)=\left(x+29\right)\left(5x+1\right)\)
\(9\left(x-5\right)^2-\left(x+7\right)^2\)
\(=\)\(3^2\left(x-5\right)^2-\left(x+7\right)^2\)
\(=\)\(\left[3\left(x-5\right)\right]^2-\left(x+7\right)^2\)
\(=\)\(\left(3x-15\right)^2-\left(x+7\right)^2\)
\(=\)\(\left(3x-15-x-7\right)\left(3x-15+x+7\right)\)
\(=\)\(\left(2x-22\right)\left(4x-8\right)\)
\(=\)\(2\left(x-11\right).4\left(x-2\right)\)
\(=\)\(8\left(x-11\right)\left(x-2\right)\)
Chúc bạn học tốt ~
\(=5^{^2}.\left(x+5\right)^2-3^2.\left(x+7\right)^2\)
\(=\left(5x+25\right)^2-\left(3x+21\right)^2\)
\(=\left(5x+25+3x+21\right)\left(5x+25-3x-21\right)\)
\(=\left(8x+46\right)\left(2x+4\right)\)
\(=4\left(2x+23\right)\left(x+2\right)\)
= 52 ( x + 5)2 - 32 (x +7)2
=[ 5 ( x +5) ]2 - [ 3 ( x + 7) ]2
= ( 5x + 25)2 - ( 3x + 21)2
= ( 5x + 25 - 3x - 21) - ( 5x + 25 + 3x + 21)
= ( 2x +4) - ( 8x +46)
= -6x - 42
= -6 ( x + 7)
M = x9 - x7 + x6 - x5 - x4 + x3 - x2 + 1
= ( x9 - x7 ) + ( x6 - x4 ) - ( x5 - x3 ) - ( x2 - 1 )
= x7( x2 - 1 ) + x4( x2 - 1 ) - x3( x2 - 1 ) - ( x2 - 1 )
= ( x2 - 1 )( x7 + x4 - x3 - 1 )
= ( x - 1 )( x + 1 )[ x4( x3 + 1 ) - ( x3 + 1 ) ]
= ( x - 1 )( x + 1 )( x3 + 1 )( x4 - 1 )
= ( x - 1 )( x + 1 )( x + 1 )( x2 - x + 1 )( x2 - 1 )( x2 + 1 )
= ( x + 1 )2( x - 1 )( x2 - x + 1 )( x - 1 )( x + 1 )( x2 + 1 )
= ( x + 1 )3( x - 1 )2( x2 + 1 )( x2 - x + 1 )
Ta có:
\(x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\)
\(=\left(x^9-x^8\right)+\left(x^8-x^7\right)-\left(x^6-x^5\right)-\left(2x^5-2x^4\right)-\left(x^4-x^3\right)+\left(x^2-x\right)+\left(x-1\right) \)
\(=x^8.\left(x-1\right)+x^7.\left(x-1\right)-x^5.\left(x-1\right)-2x^4.\left(x-1\right)-x^3\left(x-1\right)+x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^8+x^7-x^5-2x^4-x^3+x+1\right)\)
2:
a: \(x^2-12x+20\)
\(=x^2-2x-10x+20\)
=x(x-2)-10(x-2)
=(x-2)(x-10)
b: \(2x^2-x-15\)
=2x^2-6x+5x-15
=2x(x-3)+5(x-3)
=(x-3)(2x+5)
c: \(x^3-x^2+x-1\)
=x^2(x-1)+(x-1)
=(x-1)(x^2+1)
d: \(2x^3-5x-6\)
\(=2x^3-4x^2+4x^2-8x+3x-6\)
\(=2x^2\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(2x^2+4x+3\right)\)
e: \(4y^4+1\)
\(=4y^4+4y^2+1-4y^2\)
\(=\left(2y^2+1\right)^2-\left(2y\right)^2\)
\(=\left(2y^2+1-2y\right)\left(2y^2+1+2y\right)\)
f; \(x^7+x^5+x^3\)
\(=x^3\left(x^4+x^2+1\right)\)
\(=x^3\left(x^4+2x^2+1-x^2\right)\)
\(=x^3\left[\left(x^2+1\right)^2-x^2\right]\)
\(=x^3\left(x^2-x+1\right)\left(x^2+x+1\right)\)
g: \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x-3\right)\)
\(=\left(x^2+x-3\right)\left(x+2\right)\left(x-1\right)\)
h: \(\left(x^2+2x\right)^2-2\left(x+1\right)^2-1\)
\(=\left(x^2+2x+1-1\right)^2-2\left(x+1\right)^2-1\)
\(=\left[\left(x+1\right)^2-1\right]^2-2\left(x+1\right)^2-1\)
\(=\left(x+1\right)^4-2\left(x+1\right)^2+1-2\left(x+1\right)^2-1\)
\(=\left(x+1\right)^4-4\left(x+1\right)^2\)
\(=\left(x+1\right)^2\left[\left(x+1\right)^2-4\right]\)
\(=\left(x+1\right)^2\left(x+1+2\right)\left(x+1-2\right)\)
\(=\left(x+1\right)^2\cdot\left(x+3\right)\left(x-1\right)\)
i: \(x^2+4xy+4y^2-4\left(x+2y\right)+3\)
\(=\left(x+2y\right)^2-4\left(x+2y\right)+3\)
\(=\left(x+2y\right)^2-\left(x+2y\right)-3\left(x+2y\right)+3\)
\(=\left(x+2y\right)\left(x+2y-1\right)-3\left(x+2y-1\right)\)
\(=\left(x+2y-1\right)\left(x+2y-3\right)\)
j: \(x\cdot\left(x+1\right)\left(x+2\right)\left(x+3\right)-3\)
\(=\left(x^2-3x\right)\left(x^2-3x+2\right)-3\)
\(=\left(x^2-3x\right)^2+2\left(x^2-3x\right)-3\)
\(=\left(x^2-3x+3\right)\left(x^2-3x-1\right)\)
Ta có x(x+3)(x+2)(x+5)+9= x(x+5).(x+2)(x+3) +9= (x2+5x)(x2+5x+6)+9
Đặt x2+5x+3=a ta được
(a-3).(a+3)+9= a2-9+9=a2
Thay x2+5x+3 vào biểu thức trên ta được
(x2+5x+3)2
Vậy x(x+3)(x+2)(x+5)= (x2+5x+3)2
\(x\left(x+3\right)\left(x+2\right)\left(x+5\right)+9\)
\(=\left(x^2+5x\right)\left(x^2+5x+6\right)+9\)
\(=\left[\left(x^2+5x+3\right)-3\right]\left[\left(x^2+5x+3\right)+3\right]+9\)
\(=\left(x^2+5x+3\right)^2-9+9\)
\(=\left(x^2+5x+3\right)\)
9(x + 5)^2 - (x + 7)^2
<=>[3(x+5)]^2 - (x+7)^2
<=>[(3(x+5)-(x+7)] [(3(x+5)+(x+7)]
<=>(3x+15-x-7)(3x+15+x+7)
<=>(2x+8)(4x+22)
<=>2(x+4) . 2(2x+11)
<=>4(x+4)(2x+11)
9(x + 5)^2 - (x + 7)^2
<=>[3(x+5)]^2 - (x+7)^2
<=>[(3(x+5)-(x+7)] [(3(x+5)+(x+7)]
<=>(3x+15-x-7)(3x+15+x+7)
<=>(2x+8)(4x+22)
<=>2(x+4) . 2(2x+11)
<=>4(x+4)(2x+11)