Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = x9 - x7 + x6 - x5 - x4 + x3 - x2 + 1
= ( x9 - x7 ) + ( x6 - x4 ) - ( x5 - x3 ) - ( x2 - 1 )
= x7( x2 - 1 ) + x4( x2 - 1 ) - x3( x2 - 1 ) - ( x2 - 1 )
= ( x2 - 1 )( x7 + x4 - x3 - 1 )
= ( x - 1 )( x + 1 )[ x4( x3 + 1 ) - ( x3 + 1 ) ]
= ( x - 1 )( x + 1 )( x3 + 1 )( x4 - 1 )
= ( x - 1 )( x + 1 )( x + 1 )( x2 - x + 1 )( x2 - 1 )( x2 + 1 )
= ( x + 1 )2( x - 1 )( x2 - x + 1 )( x - 1 )( x + 1 )( x2 + 1 )
= ( x + 1 )3( x - 1 )2( x2 + 1 )( x2 - x + 1 )
Ta có:
\(x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\)
\(=\left(x^9-x^8\right)+\left(x^8-x^7\right)-\left(x^6-x^5\right)-\left(2x^5-2x^4\right)-\left(x^4-x^3\right)+\left(x^2-x\right)+\left(x-1\right) \)
\(=x^8.\left(x-1\right)+x^7.\left(x-1\right)-x^5.\left(x-1\right)-2x^4.\left(x-1\right)-x^3\left(x-1\right)+x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^8+x^7-x^5-2x^4-x^3+x+1\right)\)
a/\(\left(x^2-x\right)^2+4\left(x^2-x\right)-12.\)
cho \(\left(x^2-x\right)=a\)
\(\Rightarrow a^2+4a-12\)
\(=a^2+6a-2a-12\)
\(=\left(a^2+6a\right)-\left(2a+12\right)\)
\(=a\left(a+6\right)-2\left(a+6\right)\)
\(=\left(a+6\right)\left(a-2\right)\)
\(=\left(x^2-x+6\right)\left(x^2-x-2\right)\)
b/ \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24\)
\(=\left(x^2+4x+x+4\right)\left(x^2+3x+2x+6\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
Gọi \(x^2+5x+5=a\)
\(\Rightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=\left(a-1\right)\left(a+1\right)-24\)
\(=a^2-1-24\)
\(=a^2-25\)
\(=\left(a-5\right)\left(a+5\right)\)
\(\Rightarrow\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
Ta có x(x+3)(x+2)(x+5)+9= x(x+5).(x+2)(x+3) +9= (x2+5x)(x2+5x+6)+9
Đặt x2+5x+3=a ta được
(a-3).(a+3)+9= a2-9+9=a2
Thay x2+5x+3 vào biểu thức trên ta được
(x2+5x+3)2
Vậy x(x+3)(x+2)(x+5)= (x2+5x+3)2
\(x\left(x+3\right)\left(x+2\right)\left(x+5\right)+9\)
\(=\left(x^2+5x\right)\left(x^2+5x+6\right)+9\)
\(=\left[\left(x^2+5x+3\right)-3\right]\left[\left(x^2+5x+3\right)+3\right]+9\)
\(=\left(x^2+5x+3\right)^2-9+9\)
\(=\left(x^2+5x+3\right)\)