Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{8^{10}+4^{10}}{8^4+4^{11}}\)
\(=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}\)
\(=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}\)
\(=\frac{2^{20}.\left(2^{10}+1\right)}{2^{12}.\left(2^{10}+1\right)}\)
\(=\frac{2^{20}}{2^{12}}\)
\(=2^8=256\)
a) \(\frac{75^3.3^7}{81^4.5^6}=\frac{5^3.3^3.5^3.3^7}{\left(3^4\right)^4.5^6}=\frac{5^6.3^3.3^7}{3^{16}.5^6}=\frac{3^{10}}{3^{16}}=\frac{1}{3^6}=\frac{1}{729}\)
b) \(\frac{6^6.4^2}{3^{12}.2^8}=\frac{2^6.3^6.\left(2^2\right)^2}{3^{12}.2^8}=\frac{2^6.3^6.2^4}{3^{12}.2^8}=\frac{2^{10}.3^6}{3^{12}.2^8}=\frac{2^2.1}{3^6}=\frac{4}{729}\)
c) \(\frac{34^5.2^5}{2^{14}.17^5}=\frac{2^5.17^5.2^5}{2^{14}.17^5}=\frac{2^{10}}{2^{14}}=\frac{1}{2^4}=\frac{1}{16}\)
\(a=4^5.9^4-2.\dfrac{6^9}{2^{10}}.3^8+6^8.20\)
Đề là như vầy đúng ko bn?
a) \(\dfrac{-1}{3}\cdot2\cdot\dfrac{-1}{3}=\left(\dfrac{-1}{3}\right)^2\cdot2=\dfrac{1}{9}\cdot2=\dfrac{2}{9}\)
c) \(\dfrac{8^4}{4^4}=\left(\dfrac{8}{4}\right)^4=2^4=16\)
d) \(\dfrac{90^3}{15^3}=\left(\dfrac{90}{15}\right)^3=6^3=216\)
45^10*5^20/75^15
=5^10*9^10*5^20/(5^2)^15
=5^10*5^20*9^10/5^30
=9^10
(0.8)^5/(0.4)^6
=(0.4)^5*2^5/(0.4)^6
=2^5/(0.4)
=32/(0.4)
=80
2^15*9^4/6^6*8^3
=2^15*(3^2)^4/2^6*3^6*(2^3)^3
=2^15*3^8/2^6*3^6*2^9
=3^2
=9
\(\left(\dfrac{1}{2}\right)^x=\left(\dfrac{1}{8}\right)^{x-2}\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^x=\left(\dfrac{1}{2}\right)^{3x-6}\)
\(\Leftrightarrow x=3x-6\)
\(\Leftrightarrow3x-x=6\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\left(tm\right)\)
Vậy ........
\(\left(\dfrac{1}{2}\right)^x=\left(\dfrac{1}{8}\right)^{x-2}\\ \Rightarrow\left(\dfrac{1}{2}\right)^x=\left(\dfrac{1^3}{2^3}\right)^{x-2}\\ \Rightarrow\left(\dfrac{1}{2}\right)^x=\left(\dfrac{1}{2}\right)^{3\left(x-2\right)}\\ \Leftrightarrow3\left(x-2\right)=x\\ \Rightarrow3x-6=x\\ \Rightarrow3x-x=6\\ \Rightarrow x\left(3-1\right)=6\\ \Rightarrow2x=6\\ \Rightarrow x=6:2=3\)
Bài làm :
\(\frac{125^6.3^{61}.8^{10}}{4^{15}.25^9.9^{30}}\)
\(=\frac{\left(5^3\right)^6.3^{61}.\left(2^3\right)^{10}}{\left(2^2\right)^{15}.\left(5^2\right)^9.\left(3^2\right)^{30}}\)
\(=\frac{5^{18}.3^{61}.2^{30}}{2^{30}.5^{18}.3^{60}}\)
\(=3\)
Học tốt nhé
Bài làm :
Ta có :
\(\frac{125^6.3^{61}.8^{10}}{4^{15}.25^9.9^{30}}\)
\(=\frac{\left(5^3\right)^6.3^{61}.\left(2^3\right)^{10}}{\left(2^2\right)^{15}.\left(5^2\right)^9.\left(3^2\right)^{30}}\)
\(=\frac{5^{18}.3^{61}.2^{30}}{2^{30}.5^{18}.3^{60}}\)
\(=\frac{3^{61}}{3^{60}}\)
\(=3\)
\(\dfrac{8^{10}}{4^8}=\dfrac{2^{3^{10}}}{2^{2^8}}=\dfrac{2^{30}}{2^{16}}=2^{14}\)
Vậy phép tính trên có kết quả là \(2^{14}\), không phải \(2^2\)