Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Đa thức \(B=-4x^3-2x^2-2+2x\left(3+x\right)-9x+2x^3\)
Ta có: \(B=-4x^3-2x^2-2+2x\left(3+x\right)-9x+2x^3\)
\(=-2x^3-2x^2-2+6x+2x^2-9x\)
\(=-2x^3-3x-2\)
*Đa thức \(C=x^3-2x\left(3x-1\right)+4\)
Ta có: \(C=x^3-2x\left(3x-1\right)+4\)
\(=x^3-6x^2+2x+4\)
\(5^{x+2}=625\)
\(5^x.5^2=625\)
\(5^x.5^2=5^3\)
\(5^x=5^1\)
\(\Rightarrow x=1\)
có 2 cách
Xét tam giác AHB vuông tại H có :
AB^2=BH^2+AH^2(pitago)
Xét tam giác AHC vuông tại H có:
AC^2=AH^2+HC^2(pitago)
Xét tam giác ABC vuông tại A có:
BC^2=AB^2+AC^2
mà AB^2=BH^2+AH^2 và AC^2=AH^2+HC^2 (cmt)
=>BC^2=BH^2+AH^2+AH^2+HC^2
=>BC^2=2AH^2+BH^2+HC^2
cách 2
Ta có: BC^2=AB^2+AC^2(Đ/lý Pitago)
=>BC^2=BH^2+AH^2+AH^2+HC^2
=>BC^2=BH^2+2AH^2+HC^2
Bài làm
Ta có: P = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017
P = x3 + x2y - 2x2 - xy - y2 + 2y + y + x + 2017
P = ( x3 + x2y − 2x2 ) − ( xy + y2 − 2y ) + ( x + y − 2 ) + 2019
P = x2( x + y − 2 ) − y( x + y − 2 ) + ( x + y − 2 ) + 2019
Mà x + y = 2 => x + y - 2 = 0
Thay x + y - 2 = 0 và đa thức P, ta được:
P = x2 . 0 - y . 0 + 0 + 2019
P = 0 - 0 + 0 + 2019
P = 2019
Vậy P = 2019 tại x + y = 2
# Học tốt #
a. Với mọi x ta có :
\(\left(x-1\right)^2\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+3>0\)
\(\Leftrightarrow\) Đa thức trên vô nghiệm
b. Ta có :
\(x^2-2x+2=x^2-2x+1+1=\left(x-1\right)^2+1\)
Với mọi x ta có :
\(\left(x-1\right)^2\ge0\)
\(\Leftrightarrow\left(x-1\right)^2+1>0\)
\(\Leftrightarrow\) đa thức vô nghiệm
c. có nhầm đề không bạn?
Khó quá bạn ơi
Mình thật lòng xin lỗi bạn trăm ngàn lần mình không biết làm