Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1+2.3^6}{2^3.3^6-2^3.5^3}-\frac{1+3^6}{8\left(9^3-125\right)}-\frac{5^3}{18^3-10^3}\)
\(=\frac{1+2.3^6}{2^3\left(3^6-5^5\right)}-\frac{1+3^6}{2^3\left[\left(3^2\right)^3-5^3\right]}-\frac{5^3}{\left(2.3^2\right)^3-\left(2.5\right)^3}\)
\(=\frac{1+2.3^6}{2^3\left(3^6-5^3\right)}-\frac{1+3^6}{2^3\left(3^6-5^3\right)}-\frac{5^3}{2^3\left(3^6-5^3\right)}\)
\(=\frac{\left(1+2.3^6\right)-\left(1+3^6\right)-5^3}{2^3\left(3^6-5^2\right)}\)
\(=\frac{3^6-5^3}{2^3\left(3^6-5^3\right)}\)
\(=\frac{1}{8}\)
ta có (a-1)2 ≥ 0 ∀a
<=> a2-2a+1 ≥ 0
<=>a2+4a-2a+1 ≥ 4a (cộng cả 2 vế va 4a)
<=> a2+2a+1 ≥ 4a
<=> (a+1)2 ≥ 4a
CM tương tự ta đc
(b+1)2 ≥ 4b
(c+1)2 ≥ 4c
Nhân các vế với nhau ta có
[(a+1)2+(b+1)2 +(c+1)2 ]2 ≥ 4a.4b.4c
<=> [(a+1)2+(b+1)2 +(c+1)2 ]2 ≥64abc
<=> [(a+1)2+(b+1)2 +(c+1)2 ]2 ≥64 (vì abc =1)
<=> (a+1)2+(b+1)2 +(c+1)2 ≥8 (đpcm)
b) \(x^3+6x^2+9x=0\)
\(\Leftrightarrow x^3+3x^2+3x^2+9x=0\)
\(\Leftrightarrow x^2\left(x+3\right)+3x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+3x\right)=0\)
\(\Leftrightarrow\left(x+3\right)x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)^2x=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+3\right)^2=0\\x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=0\end{cases}}}\)
Vậy \(x\in\left\{-3;0\right\}\)
a) \(2x\left(x-2\right)+x^2=4\)
\(\Leftrightarrow2x\left(x-2\right)+x^2-4=0\)
\(\Leftrightarrow2x\left(x-2\right)+\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}}\)
Vậy \(x\in\left\{\frac{-2}{3};2\right\}\)
Dat A=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{13.15}\)
2A=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{13.15}\)
= 1-\(\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-....+\dfrac{1}{13}-\dfrac{1}{15}\)
= 1-\(\dfrac{1}{15}=\dfrac{14}{15}\)
=> A=\(\dfrac{7}{15}\)
Ta co : \(\dfrac{7}{15}\left(x-1\right)=\dfrac{3}{5}x-\dfrac{7}{15}\)
=> \(\dfrac{7}{15}x-\dfrac{7}{15}+\dfrac{7}{15}=\dfrac{3}{5}x\)
=> \(\dfrac{7}{15}x-\dfrac{3}{5}x=0\)
=> x\(\left(\dfrac{7}{15}-\dfrac{3}{5}\right)=0\)
=> x\(\left(-\dfrac{2}{15}\right)=0\)
=> x=0
\(\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{13.15}\right)\left(x-1\right)=\dfrac{3}{5}x-\dfrac{7}{15}\)
<=>\(\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{13.15}\right)\left(x-1\right)=\dfrac{3}{5}x-\dfrac{7}{15}\)
<=>\(\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)\left(x-1\right)=\dfrac{3}{5}x-\dfrac{7}{15}\)
<=>\(\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{15}\right)\left(x-1\right)=\dfrac{3}{5}x-\dfrac{7}{15}\)
<=> \(\dfrac{7}{15}\left(x-1\right)=\dfrac{3}{5}x-\dfrac{7}{15}\)
<=>\(\dfrac{7}{15}x-\dfrac{7}{15}=\dfrac{3}{5}x-\dfrac{7}{15}\)
<=>\(\dfrac{7}{15}x-\dfrac{3}{5}x=\dfrac{-7}{15}+\dfrac{7}{15}\)
<=> \(\dfrac{-2}{15}x=0\)
<=> \(x=0\)
Vậy: \(s=\left\{0\right\}.\)