K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

 \(2^0+2^1+2^2+2^3+...+2^{50}=1+2+2.2+2^2.2+...+2^{49}.2\)

                                                                    \(=1+2\left(1+2+2^2+2^3+...+2^{49}\right)\)

                                                                    \(=1+2\left(2^{50}-1\right)\)

                                                                    \(=1+2^{51}-2\)

                                                                    \(=2^{51}-1< 2^{51}\)

Vậy \(2^0+2^1+2^2+2^3+...+2^{50}< 2^{51}\)

Ý trc mình ko biết sorry bạn nhiều

T i c k cho mình nha mình mới có 4 điểm, thanks

29 tháng 7 2017

230+ 330+ 430 = 

15 tháng 5 2017

cần gấp ko bn

15 tháng 5 2017

mình cần gấp bạn ơi

+)\(8^2=\left(2^3\right)^2=2^6\)

+)\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)

\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)

Vì \(9>8\Rightarrow9^{100}>8^{100}\)hay \(3^{200}>2^{300}\)

+)\(9^{20}=\left(3^2\right)^{20}=3^{40}\)

\(27^{13}=\left(3^3\right)^{13}=3^{39}\)

Vì \(40>39\Rightarrow3^{40}>3^{39}\)hay \(9^{20}>27^{13}\)

+)\(10^{20}=10^{2.10}=\left(10^2\right)^{10}=100^{10}\)

\(2^{100}=2^{10.10}=\left(2^{10}\right)^{10}=1024^{10}\)

Vì \(100< 1024\Rightarrow100^{10}< 1024^{10}\)hay \(10^{20}< 2^{100}\)

+)\(2^{161}=2^{4.40+1}=\left(2^4\right)^{40}.2=16^{40}.2\)

Vì \(13< 16\Rightarrow13^{40}< 16^{40}\)\(\Rightarrow13^{40}< 2^{161}\)

5 tháng 8 2016

\(S=\left(2.1\right)^2+\left(2.2\right)^2+\left(2.3\right)^2+....+\left(2.10\right)^2\)

\(\Rightarrow S=2^2.1^2+2^2.2^2+....+2^2.10^2\)

\(\Rightarrow S=2^2\left(1^2+2^3+3^2+.....+10^2\right)\)

Áp dụng giả thiết từ đề

\(\Rightarrow S=2^2.385\)

\(\Rightarrow S=4.384=1540\)

5 tháng 8 2016

\(S=2^2+4^2+6^2+...+20^2\)

    \(=1^2.4+2^2.4+3^2.4+...+10^2.4\)

    \(=4.\left(1^2+2^2+3^2+...+10^2\right)\)

    \(=4.385=1540\)

28 tháng 11 2018

trả lời hộ mình nha