Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{x+1}+3^{x+3}=810\)
\(\Leftrightarrow3^x\left(3+3^3\right)=810\)
\(\Leftrightarrow3^x.30=810\)
\(\Leftrightarrow3^x=27\)
\(\Leftrightarrow3^x=3^3\)
\(\Leftrightarrow x=3\)
a) 2x+1=32
2x . 2 = 32
2x = 32: 2
2x = 16
2x = 24
=> x = 4
b) 3x + 3x+2 = 810
3x + 3x . 32 = 810
3x . ( 1 + 9 ) = 810
3x .10 = 810
3x = 810 : 10
3x = 81
3x = 34
=> x = 4
b) \(3.2^{x+1}=12\)
\(2^{x+1}=12:3\)
\(2^{x+1}=4\)
\(2^{x+1}=2^2\)
\(x+1=2\)
\(x=2-1\)
\(x=1\)
Vậy \(x=1\)
c) \(2^{x-1}=2^3+2^4-2^3\)
\(2^{x-1}=8+16-8\)
\(2^{x-1}=16\)
\(2^{x-1}=2^4\)
\(x-1=4\)
\(x=5\)
Vậy \(x=5\)
d) \(x^{50}=x\)
\(x^{50}-x=0\)
\(\Rightarrow x\in\left\{0;1\right\}\)
Vậy \(x\in\left\{0;1\right\}\)
\(b.3.2^{x+1}=12\\ \Rightarrow2^{x+1}=4\\ \Rightarrow2^{x+1}=2^2\\ \Rightarrow x=1\\ \)
c) \(2^{x-1}=2^3-2^3+2^4\\ \Rightarrow2^{x-1}=0+16\\ \Rightarrow2^{x-1}=16\\ \Rightarrow2^{x-1}=2^4\\ \Rightarrow x-1=4\\ \Rightarrow x=5\)
d) \(x^{50}=x\\ \Rightarrow x=0;1\)
e) \(2\left(2x-1\right)^4=32\\ \Rightarrow\left(2x-1\right)^4=16\\ \Rightarrow\left(2x-1\right)^4=2^4\\ \Rightarrow2x-1=2\\ \Rightarrow2x=3\\ \Rightarrow x=\frac{3}{2}\)
g) Bí
a)\(3^{x-2}+3^x=810\)
\(\Leftrightarrow3^x\left(3^{-2}+1\right)=810\)
\(\Leftrightarrow3^x\cdot\frac{10}{9}=810\)
\(\Leftrightarrow3^x=729\)
\(\Leftrightarrow3^x=3^6\)
\(\Leftrightarrow x=6\)
b)402240223.(x2-1)=804480443
\(\Leftrightarrow x^2-1=80448044^3:40224022^3\)
\(\Leftrightarrow x^2-1=\left(\frac{80448044}{40224022}\right)^3\)
\(\Leftrightarrow x^2-1=2^3\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow x=\pm3\)
\(3^{x+2}+3^{x+3}=810\)
\(\Rightarrow6^{2x+5}=810\)
\(\Rightarrow2x+5=810:6\)
\(2x+5=135\)
\(\Rightarrow2x=135-5\)
\(2x=130\)
\(x=130:2\)
\(x=65\)
ủng hộ
đề :
\(3^x.3^2+3^x.3^3=810\)
\(3^x\left(3^2+3^3\right)=810\)
...?...
3x+3x+2=810
\(3^x\).1 + \(3^x\).\(3^2\) =810
\(3^x\) .(1 + \(3^2\) )=810
\(3^x\) .10 =810
\(3^x\) =810 :10
\(3^x\) = 81
\(3^x\) =\(3^4\)
\(\Rightarrow\) 4
Vậy x=4
\(3^x+3^{x+2}=810\)
\(\Rightarrow3^x+3^x.3^2=810\)
\(\Rightarrow3^x.\left(1+3^2\right)=810\)
\(\Rightarrow3^x.10=810\)
\(\Rightarrow3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
Vậy \(x=4\)
a) 2.3x=162
=> 3x=162:2
=> 3x=81
=> 3x=34
=> x=4
b) 3x+3x+2=810
=> 3x+3x.32=810
=> 3x.(32+1)=810
=> 3x=810:10
=> 3x=81
=> 3x=34
=> x=4
\(\Leftrightarrow3\cdot3^x+27\cdot3^x=810\Leftrightarrow30\cdot3^x=810\Leftrightarrow3^x=27\Leftrightarrow x=3.\)