Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2301= 2^300 *2 = (2^3)^100 *2 =8^100 *2
3^201= 3^200 *3 = (3^2)^100 *3 = 9^100 *3
Do 8<9 =) 8^100 < 9^100 ; 2<3 =) 8^100 *2 < 9^100 *3 =) 2^301 < 3^201
Thy Trần: Nếu làm thế thì sẽ bị đổi dấu -> không thể kết luận 3201 > 2301 =>Sai => phải dùng cách khác.Có một cách đơn giản mà sao không ai nghĩ tới nè:
Ta có: \(3^{201}=3^{200}.3^1\)
\(2^{301}=2^{300}.2^1\)
Ta lại có; \(3^1>2^1\)(1),ta sẽ so sánh: \(3^{200}\) và \(2^{300}\)
Ta có: \(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}=\left(2^3\right)^{100}=2^{300}\)
Do đó \(3^{200}>2^{300}\) (2)
Áp dụng t/c Nếu a < b, c < d thì ac < bd .Từ (1) và (2),ta có: \(3^{200}.3^1>2^{300}.2^1\Leftrightarrow3^{201}>2^{301}\)
\(4^{301}=\left(4^3\right)^{100}.4=64^{100}.4\)
\(3^{402}=\left(3^4\right)^{100}.3^2=81^{100}.9\)
vì 81100>64100;9>4=>A>B
4^301>4^300
3^402>3^400
suy ra : 4^300=4^15.20=1073741824^20
3^400=3^20.20=3486784401^20
vậy ; b>a
a) Ta có:
\(\frac{15}{301}>\frac{15}{300}=\frac{1}{20}\)
\(\frac{25}{499}< \frac{25}{500}=\frac{1}{20}\)
Vì \(\frac{1}{20}=\frac{1}{20}\) nên \(\frac{15}{301}>\frac{1}{20}>\frac{25}{499}\) hay \(\frac{15}{301}=\frac{25}{499}\)
Vậy \(\frac{15}{301}>\frac{25}{499}\)
a,
\(-\frac{13}{38}=-1--\frac{25}{38}=-1+\frac{25}{38}\)
\(\frac{29}{-88}=-\frac{29}{88}=-1--\frac{59}{88}=-1+\frac{59}{88}\)
Vì \(\frac{25}{38}< \frac{59}{88}\Rightarrow-\frac{13}{38}< \frac{29}{-88}\)
b,
Ta có:
3301 > 3300 = [33]100 = 27100
5199 < 5200 = [52]100 = 25100
Mà 27100 > 25100 => 3301 > 5199
c,
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left[2n+1\right]\left[2n+3\right]}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n+1}-\frac{1}{2n+3}\)
\(=1-\frac{1}{2n+3}< 1\)
Vậy P < 1
\(5^{199}=\left(5^{\frac{199}{301}}\right)^{301}\)
\(5^{\frac{199}{301}}< 3^1\)
\(\Leftrightarrow5^{199}< 3^{301}\)
a) ta có: 27^4 = (3^3)^4 = 3^12 < 3^20
b) ta có: 25.5^31 = 5^2.5^31 = 5^33 < 5^34
c) ta có: 16^504 = (2^4)^504 = 2^2016
32^403 = (2^5)^403 = 2^2015 < 2^2016
=> 16^504 > 32^403
d) ta có: 5^301 > 5^300 = (5^3)^100 = 125^100
11^199 < 11^200 = (11^2)^100 = 121^100
=> 125^100 > 121^100
=> 5^301 > 11^199
a)ta có : 27^4=(3^3)^4=3^12<3^20
=>27^4<3^20
b)ta có :25*5^31= 5^2*5^31=5^33<5^34
=>5^34>25*5^31
c)ta có :16^504= (2^4)^504=2^2016
32^403=(2^5)^403=2^2015
=>2^2016>2^2015
=>16^504>32^403
d)5^301=125^100*5=121^100*5*4^100
11^199=121^99*11<121^100*5*4^100
=>5^301>11^199
bằng!
=