K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2024

Ai biết

\(2^{2x+3}+4^{x+2}=384\)

=>\(2^{2x}\cdot2^3+4^x\cdot16=384\)

=>\(4^x\cdot8+4^x\cdot16=384\)

=>\(4^x\cdot24=384\)

=>\(4^x=\dfrac{384}{24}=16=4^2\)

=>x=2

20 tháng 11 2016

x^4-y^4= (x^2)^2- (y^2)^2

Bài 1:

a) Ta có: \(E=\left(2x+5\right)^2-5\left(x-4\right)\left(x+4\right)-3\left(x-2\right)^3\)

\(=4x^2+20x+25-5\left(x^2-16\right)-3\left(x^3-6x^2+12x-8\right)\)

\(=4x^2+20x+25-5x^2+60-3x^3+18x^2-36x+24\)

\(=-3x^3+17x^2-16x+109\)

b) Ta có: \(F=\left(2x-3\right)^3-4\left(2x+4\right)^2+3\left(x+3\right)\left(x^2-3x+9\right)\)

\(=8x^3-36x^2+54x-27-4\left(4x^2+16x+16\right)+3\left(x^3+27\right)\)

\(=8x^3-36x^2+54x-27-16x^2-64x-64+3x^3+81\)

\(=11x^3-52x^2-10x-10\)

c) Ta có: \(G=\left(2x+1\right)^2-3\left(x+2\right)\left(x^2-2x+4\right)+\left(x+3\right)^3\)

\(=4x^2+4x+1-3\left(x^3+8\right)+x^3+9x^2+27x+27\)

\(=x^3+13x^2+31x+28-3x^3-24\)

\(=-2x^3+13x^2+31x+4\)

5 tháng 9 2020

Mấy bài dài dài kia tí mình làm cho :) 

( x - 1 )3 - x( x - 2 )2 + 1 

= x3 - 3x2 + 3x - 1 - x( x2 - 4x + 4 ) + 1

= x3 - 3x2 + 3x - x3 + 4x2 - 4x

= x2 - x = x( x - 1 )

2x( 3x + 2 ) - 3x( 2x + 3 )

= 6x2 + 4x - 6x2 - 9x

= -5x

( x + 2 )3 + ( x - 3 )2 - x2( x + 5 )

= x3 + 6x2 + 12x + 8 + x2 - 6x + 9 - x3 - 5x2

= 2x2 + 6x + 17

( 2x + 3 )( x - 5 ) + 2x( 3 - x ) + x - 10

= 2x2 - 7x - 15 + 6x - 2x2 + x - 10

= -25

( x + 5 )( x2 - 5x + 25 ) - x( x - 4 )2 + 16x

= x3 + 53 - x( x2 - 8x + 16 ) + 16x

= x3 + 125 - x3 + 8x2 - 16x + 16

= 8x2 + 125

( -x - 2 )3 + ( 2x - 4 )( x2 + 2x + 4 ) - x2( x - 6 )

= -x3 - 6x2 - 12x - 8 + 2x3 - 16 - x3 + 6x2

= -12x - 24 = -12( x + 2 )

5 tháng 9 2020

Tương tự ... 

a, \(\left(x-1\right)^3-x\left(x-2\right)^2+1=x^3-3x^2+3x-1-x^3+4x^2-4x+1=x^2-x\)

b, \(2x\left(3x+2\right)-3x\left(2x+3\right)=6x^2+4x-6x^2-9x=-5x\)

c, \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)=x^3+6x^2+12x+8+x^2+6x+9-x^3-5x^2=2x^2+18x+17\)

a: \(=4x^2+20x+25+4x^2-20x+25-\left(4x^2-1\right)\)

\(=8x^2+50-4x^2+1=4x^2+51\)

b: \(=8a^3+12a^2b+6ab^2+b^3+8a^3-12a^2b+6ab^2-b^3-16a^3\)

\(=12ab^2\)

c: \(\left(2x-1\right)^3-\left(x-2\right)\left(x^2+2x+4\right)-7x^3-2x\)

\(=\left(2x-1\right)^3-x^3+8-7x^3-2x\)

\(=8x^3-12x^2+6x-1-8x^3-2x+8\)

\(=-12x^2+4x+7\)

d: \(\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1-\left(x^2-2x+1\right)-3\left(x^2-1\right)\)

\(=x^2+2x+1-x^2+2x-1-3x^2+3\)

\(=-3x^2+4x+3\)

21 tháng 8 2018

\(A=\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3-2\right)\)

\(\Rightarrow A=\left(x^3+8\right)-\left(x^3-2\right)\)

\(\Rightarrow A=x^3+8-x^3+2\)

\(\Rightarrow A=\left(x^3-x^3\right)+\left(8+2\right)\)

\(\Rightarrow A=10\)

21 tháng 8 2018

\(A=\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3-2\right)\)

\(=x^3+8-x^3+2\)

\(=10\)

\(B=\left(x+2\right)\left(x-2\right)\left(x^2+2x+4\right)\left(x^2-2x+4\right)\)

\(=\left(x+2\right)\left(x^2-2x+4\right)\left(x-2\right)\left(x^2+2x+4\right)\)

\(=\left(x^3+8\right)\left(x^3-8\right)\)

\(=x^6-64\)

\(C=\left(x^2+3x+1\right)^2+\left(3x-1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)\)

\(=\left(x^2+3x+1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)

\(=\left(x^2+3x+1-3x+1\right)^2\)

\(=\left(x^2+2\right)^2\)

\(D=\left(3x^3+3x+1\right)\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)

\(=\left(3x^3+1+3x\right)\left(3x^3+1-3x\right)-\left(3x^3+1\right)^2\)

\(=\left(3x^3+1\right)^2-9x^2-\left(3x^3+1\right)^2\)

\(=-9x^2\)

\(E=\left(2x^2+2x+1\right)\left(2x^2-2x+1\right)-\left(2x^2+1\right)^2\)

\(=\left(2x^2+1+2x\right)\left(2x^2+1-2x\right)-\left(2x^2+1\right)^2\)

\(=\left(2x^2+1\right)^2-4x^2-\left(2x^2+1\right)^2\)

\(=-4x^2\)

1: \(\Leftrightarrow5x^2+4x-1-2x^2+12x-18=3x^2+5x-2-x^2-8x-16+x^2-x\)

\(\Leftrightarrow3x^2+16x-19=3x^2-4x-18\)

=>20x=1

hay x=1/20

2: \(\Leftrightarrow5x^2-20x-41=x^2-10x+25+4x^2+4x+1-\left(x^2-2x\right)+\left(x-1\right)^2\)

\(\Leftrightarrow5x^2-20x-41=4x^2-4x+26+x^2-2x+1\)

\(\Leftrightarrow-20x-41=-6x+27\)

=>-14x=68

hay x=-34/7