Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
goi UCLN(n+3,2n+5)=d
=>n+3 chia hết cho d
2n+5 chia hết cho d
=>2n+6 chia hết cho d
=>2n+5 chia hết cho d
=>(2n+6)-(2n+5) chia hết cho d
=>1 chia hết cho d.
mà 1 chia hết cho 1
=>d=1
=>UCLN(2n+5,n+3)=1
=> n+3 và 2n+5 là 2 số nguyên tố cùng nhau
vay....
Gọi d là USC (n+3; 2n+5) => (n+3):d và (2n+5):d <=>(2n+6):d và (2n+5):d <=> [(2n+6)-(2n+5)]:d <=> (2n+6-2n-5):d <=>1:d
=> ƯCLN của 2 số đó là 1 => Chúng là số nguyên tố cùng nhau
1. Nhận xét rằng a là số tự nhiên lẻ và ab + 4 là một số chẵn.
Nếu d là một ước chung của a và ab + 4 ( d > 1), thì do a lẻ nên d phải là số lẻ.
Do ab chia hết cho d nên 4 chia hết cho d, suy ra d \(\in\) { 2; 4 }. (mâu thuẫn)..
b) Gọi d là ước chung lớn nhất của n + 2 và 3n + 11.
Suy ra \(\hept{\begin{cases}n+2⋮d\\3n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+11⋮d\end{cases}}}\).
Suy ra \(3n+11-\left(3n+6\right)=5⋮d\).
Vì vậy d = 1 hoặc d = 5.
Để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau thì d = 1.
Nếu giả sử ngược lại \(\hept{\begin{cases}n+2⋮5\\3n+11⋮5\end{cases}}\) \(\Leftrightarrow n+2⋮5\).
Suy ra \(n\) chia 5 dư 3 hay n = 5k + 3.
Vậy để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau, thì n chia cho 5 dư 0, 1, 2, 4 hay n = 5k, n = 5k +1, n = 5k + 2, n = 5k + 4.
a) Gọi \(\:ƯCLN\) của \(n+2;n+3\) là d \(\Rightarrow n+2⋮d;n+3⋮d\)
\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1;-1\)
\(\Rightarrow n+2;n+3NTCN\)
b) Gọi \(\:ƯCLN\) \(2n+3;3n+5\) là d \(\Rightarrow2n+3⋮d;3n+5⋮d\)
\(\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\) và \(2\left(3n+5\right)⋮d\Rightarrow6n+10⋮d\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow2n+3;3n+5NTCN\)
gọi UCLN(n+3; 2n + 5) = d
=> n+3 chia hết cho d và 2n + 5 chia hết cho d
=> 2n + 6 chia hết cho d và 2n + 5 chia hết cho d
=> (2n + 6) - (2n + 5) = 1 chia hết cho d => d = 1 nên n+3 và 2n +5 là hai số ntố cùng nhau
gọi UCLN(n+3;2n+5) là d
theo bài ra ta có: n+3=2(n+3)=2n+6 chia hết cho d
2n+5 chia hết cho d
-> (2n+6)-(2n+5) chia hết cho d
-> 2n+6-2n-5 chia hết cho d
-> 1 chia hết cho d
Vậy UCLN(n+3;2n+5)=1 -> n+3 và 2n+5 là 2 số nguyên tố cùng nhau
CHÚC BẠN HỌC TỐT ! :)
gọi UCLN(2n+5, 3n+7) là d
ta có 2n+5 chia hết cho d => 3(2n+5) chia hết cho d <=> 6n+15 chia hết cho d(1)
3n+7 chia hết cho d => 2(3n+7) chia hết cho d <=> 6n+14 chia hết cho d(2)
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+5, 3n+7 ngtố cùng nhau(đpcm)
Gọi \(d=\left(2n+9;n+5\right)\)
\(\left\{{}\begin{matrix}2n+9⋮d\\n+5⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2n+9⋮d\\2n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+10\right)-\left(2n+9\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
=> 2n+9 và n+5 nguyên tố cùng nhau