Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-1\right)^2=49\)
\(\Rightarrow\left(x-1\right)^2=7^2=\left(-7\right)^2\)
\(\Rightarrow x-1=7\) hoặc \(x-1=-7\)
\(x=7+1=8\) \(x=-7+1=-6\)
Vậy x = 8 hoặc x = - 6
b) \(3\cdot\left(13-x\right)^2=27\)
\(\left(13-x\right)^2=27\div3=9\)
\(\Rightarrow\left(13-x\right)^2=3^2=\left(-3\right)^2\)
\(\Rightarrow13-x=3\) hoặc \(13-x=-3\)
\(x=13-3=10\) \(x=13+3=16\)
Vậy x = 10 hoặc x = 16
c) \(164-\left(15-x\right)^3=100\)
\(\left(15-x\right)^3=164-100=64\)
\(\Rightarrow\left(15-x\right)^3=4^3\)
\(\Rightarrow15-x=4\)
\(x=15-4=11\)
Vậy x = 11
d) \(\left(x+3\right)^3-15=210\)
\(\left(x+3\right)^3=210+15=225\)
\(\Rightarrow\left(x+3\right)^3=...\)
Tương tự mũ lẻ cậu nhé
e) \(x^2\div4=16\)
\(x^2=16\cdot4=64\)
\(\Rightarrow x^2=8^2=\left(-8\right)^2\)
Vậy x = 8 hoặc x = - 8
a/\(\left(x-1\right)^2\)=49
\(\left(x-1\right)^2\)=\(7^2\)
=>x-1=7
x=7+1
x=8
b/3.\(\left(13-x\right)^2\)=27
\(\left(13-x\right)^2\)=27:3
\(\left(13-x\right)^2\)=9
\(\left(13-x\right)^2\)=\(3^2\)
=>13-x=3
x=13-3
x=10
c/164-\(\left(15-x\right)^3\)=100
\(\left(15-x\right)^3\)=164-100
\(\left(15-x\right)^3\)=64
\(\left(15-x\right)^3\)=\(4^3\)
=>15-x=4
x=15-4
x=11
d/\(\left(x+3\right)^3\)-15=210
\(\left(x+3\right)^3\)=210+15
\(\left(x+3\right)^3\)=225
sai đề bài câu d hay sao ý bạn ạ
chỉ có \(\left(x+3\right)^2\)thì mới tính được
e/\(x^2\):4=16
\(x^2\)=16.4
\(x^2\)=64
\(x^2\)=\(8^2\)
=>x=8
36 . 46 = (3.4)6 = 126
82 . 23 . 162 = (23)2 . 23 . (24)
= 26 . 23 . 24 = 26 + 3 + 4 = 213
23 . 22 . 83 = 23 . 22 . (23)3
= 23 . 22 . 29 = 23 + 2 + 9 = 214
y. y7 = y1 + 7 = y8
\(3^6\cdot4^6=\left(3\cdot4\right)^6=12^6\)
\(8^2\cdot2^3\cdot16^2=\left(2^3\right)^2\cdot2^3\cdot\left(2^4\right)^2\)
\(=2^6\cdot2^3\cdot2^8=2^{17}\)
\(2^3\cdot2^2\cdot8^3=2^5\cdot\left(2^3\right)^3\)
\(2^5\cdot2^9=2^{14}\)
\(y\cdot y^7=y^{1+7}=y^8\)
\(x^3-2^3=2^5-\left(3^{16}:3^{14}+2^8:2^6\right)\)
\(x^3-8=\)\(32-\left(3^2+2^2\right)\)
\(x^3-8=\)\(32-\left(9+4\right)\)
\(x^3-8=32-13\)
\(x^3-8=19\)
\(x^3\) \(=19+8\)
\(x^3\) \(=27\)
=> \(x=3\)
Vậy \(x=3\)
a) \(2^3=8\) ; \(3^2=9\)
=> \(2^3< 3^2\)
b) \(3^{210}\cdot3^{10}=3^{210+10}=3^{220}>3^{215}\)
=> \(3^{215}< 3^{210}.3^{10}\)
\(\left\{210:\left[16+3.\left(6+3.2^2\right)\right]\right\}-3\)
\(=\left\{210:\left[16+3.\left(6+12\right)\right]\right\}-3\)
\(=\left\{210:\left[16+3.18\right]\right\}-3\)
\(=\left\{210:\left[16+54\right]\right\}-3\)
\(=\left\{210:70\right\}-3=3-3=0\)
\(\left\{210:\left[16+3\cdot\left(6+3\cdot2^2\right)\right]\right\}\)
\(=210:\left[16+3\cdot\left(6+3\cdot4\right)\right]\)
\(=210:\left[16+3\cdot\left(6+12\right)\right]\)
\(=210:\left(16+3\cdot18\right)\)
\(=210:\left(16+54\right)\)
\(=210:70\)
\(=3\)
#Urushi
{210:[16+3.(6+3. 2^2)]}
={210:[16+3.(6+12)]}
={210:[16+3.18]}
={210:70}
=3