K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

         20x+15y-2xy=0

         (20x-2xy)+15y=0

         x.(20+2y)+15y=0

         x.(20+2y)+15y=0

  vì        x.(20+2y)+15y=0

nên x=0 và 15y=0

                    y=0

kl : x=0 thì y=0 thử lại rồi

27 tháng 4 2017
20‧x+15‧y-2‧x+y‧1=0 x‧(20+15)-y‧(2+1)=0 x‧35-y‧3=0 →x=3;y=35
26 tháng 12 2020

a) 10x + 15y = 5(2x + 3y)

b) x2 - 2xy - 4 + y2

= (x2 - 2xy + y2)  - 4

= (x - y)2 - 22

= (x - y + 2)(x - y - 2)

c) x(x + y) - 3x - 3y

= x(x + y) -3(x + y)

= (x - 3)(x + y)

26 tháng 12 2020

a, \(10x+15y=5\left(2x+3y\right)\)

b, \(x^2-2xy-4+y^2=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)

c, \(x\left(x+y\right)-3x-3y=x\left(x+y\right)-3\left(x+y\right)=\left(x-3\right)\left(x+y\right)\)

8 tháng 9 2016

\(\text{Tìm x:}\)

\(a.x\left(x-1\right)-3x+3x=0\)

\(x\left(x-1\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)

\(b.3x\left(x-2\right)+10-5x=0\)

\(3x^2-6x+10-5x=0\)

\(3x^2-11x+10=0\)

\(3x^2-11x=-10\)(bn xem lại đề nhé)

\(c.x^3-5x^2+x-5=0\)

\(x^3-5x^2+x=5\)

\(d.x^4-2x^3+10x^2-20x=0\)


 

8 tháng 9 2016

bài 1:phân tích thành phân tử

  a> x^2-6x-y^2+9

= (x-3)^2 -y^2

= (x-3 -y) (x-3+y)

b>x^2-xy-8x+8y

= x(x-y) - 8(x-y)

= (x-8) (x-y)

c>25-4x^2-4xy-y^2

= 5^2 - (2x + y)^2 

= (5 - 2x -y) (5 +2x+y) 

d>xy-xz-y+z

= x(y-z) - (y-z)

= (x-1) (y-z)

e>x^2-xz-yz+2xy+y^2

= (x+y)^2 - z(x+y)

= (x+y-z) (x+y)

g>x^2-4xy+4y^2-z^2-4zt-4t^2

= (x-2y)^2 - (z + 2t)^2 

= (x-2y -x-2t) (x-2y + z +2t)

bài 2:tìm X bt 

a>x.(x-1)-3x+3x=0

x (x-1) =0

\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)

Vậy x=0 và x=1

b>3x.(x-2)+10-5x=0

3x(x-2) - 5 (x-2)=0

(3x-5) (x-2) =0

\(\Rightarrow\hept{\begin{cases}3x-5=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}3x=5\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}}}\)

c>x^3-5x^2+x-5=0

x^2 (x-5) + (x-5) =0

(x^2 +1)(x-5) =0

\(\Rightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x^2=-1\\x=5\end{cases}\Rightarrow}\hept{\begin{cases}x\in\varphi\\x=5\end{cases}}}\)

Vậy x=5

d>x^4-2x^3+10x^2-20x=0

x^3 (x-2) + 10x(x-2) =0 

(x^3 + 10x) (x-2) =0

x(x^2 + 10) (x-2) =0

\(\Rightarrow\hept{\begin{cases}x=0\\x^2+10=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x^2=-10\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x\in\varphi\\x=2\end{cases}}}}\)

Vậy x=0 và x=2

7 tháng 7 2018

a) Ta có: \(x^2-20x+101=x^2-2.x.10+10^2+1=\left(x-10\right)^2+1\)

Vì \(\left(x-10\right)^2\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow\left(x-10\right)^2+1>1>0\)

Vậy x2-20x+101 >0 với mọi x

b) \(4a^2+4a+2=\left(2a\right)^2+2.2a.1+1+1=\left(2a+1\right)^2+1\)

Vì \(\left(2a+1\right)^2\ge0\left(\forall a\in Z\right)\)

\(\Rightarrow\left(2a+1\right)^2+1>1>0\)

Vậy 4a2+4a+2 > 0 với mọi a

c) \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+16+8\right)+16\)

\(=\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+16\)

\(=\left(x^2+10x+20\right)^2\) \(\ge0\left(\forall x\right)\)

7 tháng 7 2018

Giúp mình với !!

16 tháng 6 2018

a, Đặt \(A=2+x-x^2=-\left(x^2-x-2\right)=-\left(x^2-x+\frac{1}{4}-\frac{9}{4}\right)=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0\Rightarrow A=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)

Dấu "=" xảy ra khi x = 1/2

Vậy Amax=9/4 khi x=1/2

b, Đặt \(B=4x^2-20x+26=\left(2x\right)^2-2.2x.5+25+1=\left(2x-5\right)^2+1\)

Vì \(\left(2x-5\right)^2\ge0\Rightarrow B=\left(2x-5\right)^2+1\ge1\)

Dấu "=" xảy ra khi x = 5/2

Vậy Bmin=1 khi x=5/2

10 tháng 4 2020

Cách làm như trên là không sai, tuy nhiên để chặt chẽ hơn bạn có thể làm như thế này:

Ta có:\(\left\{{}\begin{matrix}4a>4b\\-2>-3\end{matrix}\right.\), cộng 2 vế của bất phương trình ta được \(4a-2>4b-3\left(ĐPCM\right)\)

NV
28 tháng 8 2020

- Với \(x=1\) là 1 nghiệm

- Với \(x>1\Rightarrow x-x^2< 0\Rightarrow\left\{{}\begin{matrix}x^2>1\\10^{x-x^2}< 10^0=1\end{matrix}\right.\)

\(\Rightarrow x^2>10^{x-x^2}\) pt vô nghiệm

- Với \(0< x< 1\Rightarrow x-x^2>0\Rightarrow10^{x-x^2}>1>x^2\) pt vô nghiệm

Vậy pt có nghiệm duy nhất \(x=1\)

3 tháng 3 2022

cái này ez mà

a,

\(\dfrac{1}{2}x\)\(-3>0\)

\(\Leftrightarrow\dfrac{1}{2}x>3\)

\(\Leftrightarrow x>6\)

b,\(-\dfrac{5}{2}-3\ge0\)

\(-\dfrac{5}{2}\ge3\)

\(x\ge-\dfrac{6}{5}\)