Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 chữ số tận cùng của M là 008 chia hết cho 8
=> M chia hết cho 8
Tổng các chữ số của M laf12 chia hết cho 3
=> M chia hết cho 3
Mà (3;8)=1
=> M chia hết cho 3.8=24
M ko phải số chính phương vì tận cùng là 8, trong khi số chính phương tận cùng ko là 8
Bài 1 . Ta có 13^2014 là số lẻ
15^2015 là số lẻ => 13^2014+15^2015 là số chẵn chia hết cho 2
Bài 2 Ta có 121^2013 ko chia hết cho 5( có tận cùng là 1)
125^2014 chia hết cho 5( vì 125 chia hết cho 5)
=> 121^2013+125^2014 ko chia hết cho 5
Bài 1 . Ta có 13^2014 là số lẻ
15^2015 là số lẻ => 13^2014+15^2015 là số chẵn chia hết cho 2
Bài 2 Ta có 121^2013 ko chia hết cho 5﴾ có tận cùng là 1﴿
125^2014 chia hết cho 5﴾ vì 125 chia hết cho 5﴿ => 121^2013+125^2014 ko chia hết cho 5
A= 2015+20152+20153+....+20152013+20152014+20152015
A= ( 2015+20152 )+ ( 20153+20154 )+..... + (20152012+20152013) + (20152014+20152015)
A= 2015. (1+2015)+ 20153 .(1+2015) +.....+ 20152012. (1+2015)+ 20152014. (1+2015)
A= 2015.2016 + 20153.2016 +......+ 20152012.2016 + 20152014.2016
A= 2016. ( 2015+ 20153 +.......+20152012 + 20152014)
=> A chia hết cho 2016
=> đpcm : điều phải chứng minh
ta có 12015+22015+....+20142014+20152015
=>12015+22015+.....+20142015+20152015-2014
(1+2+3+4+....+2014+2015)2015-2014
=20311202015-2014 mà 20311202015 có tận cùng bằng 0 mà
20311202015-2014=......6
suy ra tổng đó có tận cùng là 6
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
22013 + 22014 + 22015 = 22011(22 + 23 + 24)=22011.(4+8+16)=28.22011
Vì 28 chia hết cho 28 nên 28.22011 cũng chia hết cho 28 (Điều phải chứng minh)!
Ta có \(2014^{2015}+2015^{2014}+2013^{2013}=2014^{2.1007}.2014+2015^{2014}+2013^{4.503}.2013\)
\(=\left(...6\right).\left(...4\right)+\left(...5\right)+\left(...1\right).\left(...3\right)=\left(...4\right)+\left(...5\right)+\left(...3\right)=\left(...2\right)\)có tận cùng là 2 nên chia hết cho 2.
2014 đồng dư với 0(mod 2)
=>20142015 đồng dư với 0(mod 2)
20152014 đồng dư với 1(mod 2)
=>20152014 đồng dư với 1(mod 2)
2013 đồng dư với 1(mod 2)
=>20132013 đồng dư với 1(mod 2)
=>A chia hết cho 2
=>đpcm