Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}\)
=\(\frac{2002\sqrt{2003}}{\sqrt{2003}.\sqrt{2003}}+\frac{2003\sqrt{2002}}{\sqrt{2002}.\sqrt{2002}}\)
=\(\frac{\sqrt{2002}.\sqrt{2002}.\sqrt{2003}}{\sqrt{2003}.\sqrt{2003}}+\frac{\sqrt{2003}.\sqrt{2003}.\sqrt{2002}}{\sqrt{2002}.\sqrt{2002}}\)
>\(\frac{\sqrt{2002}.\sqrt{2002}.\sqrt{2003}+\sqrt{2003}.\sqrt{2003}.\sqrt{2002}}{\sqrt{2003}.\sqrt{2002}}\)
>\(\frac{\sqrt{2002}.\sqrt{2003}.\left(\sqrt{2002}+\sqrt{2003}\right)}{\sqrt{2003}.\sqrt{2002}}\)
>\(\sqrt{2002}+\sqrt{2003}\)
=>\(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}\)>\(\sqrt{2002}+\sqrt{2003}\)(dpcm)
Đặt 2002=a; 2003=b
Theo đề, ta có:
\(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}>\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}>\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow a\sqrt{a}+b\sqrt{b}-a\sqrt{b}-b\sqrt{a}>0\)
\(\Leftrightarrow a\left(\sqrt{a}-\sqrt{b}\right)-b\left(\sqrt{a}-\sqrt{b}\right)>0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\cdot\left(\sqrt{a}+\sqrt{b}\right)>0\)(luôn đúng)
Đặt \(\sqrt{2002}=a,\sqrt{2003=b}\)
Ta có:
VT = \(\dfrac{a^2}{b}+\dfrac{b^2}{a}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng engel ta có:
\(\dfrac{a^2}{b}+\dfrac{b^2}{a}\ge\dfrac{\left(a+b\right)^2}{a+b}=a+b\)
hay \(\dfrac{2002}{\sqrt{2003}}+\dfrac{2003}{\sqrt{2002}}\ge\sqrt{2002}+\sqrt{2003}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b\)
Mà \(a\ne b\)
\(\Rightarrow\)\(\dfrac{2002}{\sqrt{2003}}+\dfrac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)(đpcm)
Dấu + nhà mn