K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

M = ( x\(^3\) + x\(^3\) + x\(^3\) ) + ( y\(^3\) - y\(^3\) + y\(^3\) ) + ( z\(^3\) + z3 - z\(^3\) )

= 3x\(^3\) + y\(^3\) + z\(^3\)

3 tháng 4 2017

\(M=x^3+y^3+z^3+x^3-y^3+z^3+x^3+y^3-z^3.\)

\(=\left(x^3+x^3+x^3\right)+\left(y^3-y^3+y^3\right)+\left(z^3+z^3-z^3\right)\)

\(=3x^3+y^3+z^3\)

3 tháng 4 2017

M= \(3x^3+y^3+z^3\)

26 tháng 2 2018

Ta có: \(M=x^3+y^3+z^3+x^3-y^3+z^3+x^3+y^3-z^3\)

\(M=\left(x^3+x^3+x^3\right)+\left(y^3-y^3+y^3\right)+\left(z^3+z^3-z^3\right)\)

\(M=3x^3+y^3+z^3\)

26 tháng 2 2018

\(M=x^3+x^3+x^3+y^3-y^3+y^3+z^3+z^3-z^3\)\(M=3x^3+y^3+z^3\)

5 tháng 3 2017

Bài 1: Bậc của đa thức là gì?

Bài 2:

Ta có: \(M=x^3+y^3+z^3+x^3-y^3+z^3+x^3+y^3-z^3\)

\(\Rightarrow M=\left(x^3+x^3+x^3\right)+\left(y^3-y^3+y^3\right)+\left(z^3+z^3-z^3\right)\)

\(\Rightarrow M=3x^3+y^3+z^3\)

5 tháng 3 2017

Bài 1 :

a) 4x3 - \(\dfrac{2}{3}x\) + 5 - 2x + x3

= ( 4x3 + x3 ) - ( \(\dfrac{2}{3}x\) + 2x ) + 5

= 5x3 - \(\dfrac{8}{3}x\) + 5

\(\rightarrow\) Bậc của đa thức là 3

b) 5x2 + 11x3 - 3x3 + 8x3 - 3x2

= ( 5x2 - 3x2 ) + ( 11x3 - 3x3 + 8x3 )

= 2x2 + 16x3

\(\rightarrow\) Bậc của đa thức là 3

Bài 2 :

M = x3 + y3 + z3 + x3 - y3 + z3 + x3 + y3 - z3

M = ( x3 + x3 + x3 ) + ( y3 - y3 + y3 ) + ( z3 + z3 - z3 )

M = 3x3 + y3 + z3

16 tháng 3 2017

Bạn thay x, y, z vào đơn thức là được mà! Mấy đơn thức này còn thu gọn rồi! Bạn tự làm đi

6 tháng 2 2020

a , thay vào

=> 15 . 8 . -8 . 27 = -25920

các câu khác tương tự

a) Đặt P(y)=0

⇔3y-6=0

⇔3y=6

hay y=2

Vậy: S={2}

Đặt N(x)=0

\(\Leftrightarrow\frac{1}{3}-2x=0\)

\(\Leftrightarrow2x=\frac{1}{3}\)

hay \(x=\frac{1}{3}:2=\frac{1}{3}\cdot\frac{1}{2}=\frac{1}{6}\)

Vậy: \(S=\left\{\frac{1}{6}\right\}\)

Đặt D(z)=0

\(z^3-27=0\)

\(\Leftrightarrow z^3=27\)

hay z=3

Vậy: S={3}

Đặt M(x)=0

\(x^2-4=0\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow x=\pm2\)

Vậy: S={2;-2}

Đặt C(y)=0

\(\Leftrightarrow\sqrt{2}y+3=0\)

\(\Leftrightarrow\sqrt{2}y=-3\)

\(\Leftrightarrow y=\frac{-3}{\sqrt{2}}=\frac{-3\sqrt{2}}{2}\)

Vậy: \(S=\left\{\frac{-3\sqrt{2}}{2}\right\}\)

b) Ta có: \(x^4\ge0\forall x\)

\(\Rightarrow x^4+1\ge1>0\forall x\)

hay Q(x) vô nghiệm(đpcm)

6 tháng 1 2018

\(A=\left(\dfrac{-3}{7}.x^3.y^2\right).\left(\dfrac{-7}{9}.y.z^2\right).\left(6.x.y\right)\)

\(A=\left(\dfrac{-3}{7}x^3y^2\right).\left(\dfrac{-7}{9}yz^2\right).6xy\)

\(A=\left(\dfrac{-3}{7}.\dfrac{-7}{9}.6\right).\left(x^3.x\right)\left(y^2.y.y\right).z^2\)

\(A=2x^4y^4z^2\)

\(B=-4.x.y^3\left(-x^2.y\right)^3.\left(-2.x.y.z^3\right)^2\)

\(B=\left[\left(-4\right).\left(-2\right)\right].\left(x.x^6.x^2\right)\left(y^3.y^3.y^2\right)\left(z^6\right)\)

\(B=8x^7y^{y^8}z^6\)

B =-4.x.y3 . (-x2.y)3 . (-2.x.y.z3)2

B=[ (-4) . (-2)] . [x . (-x2)3 . x2].(y3 . y3 . y2) . (z3)2

B=8 . (x.x6.x2) . y8 . z6 (vì lỹ thừa bậc chẵn của một số ko âm)

B=8 . x9 . y8 .z6

Chucs bạn học tốtvui