K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 4 2024

Đặt \(\left\{{}\begin{matrix}y+z-x=a>0\\x+z-y=b>0\\x+y-z=c>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{b+c}{2}\\y=\dfrac{a+c}{2}\\z=\dfrac{a+b}{2}\end{matrix}\right.\)

BĐT cần c/m trở thành: \(\dfrac{b+c}{6a}+\dfrac{c+a}{6b}+\dfrac{a+b}{6c}\ge1\)

\(\Leftrightarrow\dfrac{1}{6}\left(\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{c}\right)\ge1\)

Thật vậy, áp dụng BĐT Cô-si ta có:

\(\dfrac{1}{6}\left(\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{c}\right)\ge\dfrac{1}{6}.6\sqrt[6]{\dfrac{b.c.c.a.a.b}{a.a.b.b.c.c}}=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\) hay \(x=y=z\)

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x -...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

24 tháng 11 2016

A= 4x2y2 - (x2 + y2 - z2 )2

= (2xy - x2 - y2 + z2)(2xy + x2 + y2 - z2)

=[ z2-(x-y)2].[ (x+y)2-z2 ]

=(z-x+y)(z+x-y)(x+y-z)(z+y+z)

x,y,z là độ dài 3 cạnh của 1 tam giác=>x>0,y>0,x>0

áp dụng bất đẳng thức của tam giác

ta có:

z-x+y>0

z+x-y>0

x+y-z>0

x+y+z>0

=> tích (z-x+y)(z+x-y)(x+y-z)(x+y+z) >0

=> A>0

22 tháng 1 2017

Tím GTNN và GTLN là gì

22 tháng 1 2017

giá trị nhỏ nhất và lớn nhất

28 tháng 8 2019

2

a

\(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)

\(\Rightarrow x^3+y^3+3x^2y+3xy^2=-z^3\)

\(\Rightarrow x^3+y^3+z^3=3xy\left(x+y\right)=3xyz\)

b

Đặt \(a-b=x;b-c=y;c-a=z\Rightarrow x+y+z=0\)

Ta có bài toán mới:Cho \(x+y+z=0\).Phân tích đa thức thành nhân tử:\(x^3+y^3+z^3\)

Áp dụng kết quả câu a ta được:

\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

17 tháng 4 2017

Ta có:

x2​y + y2z + z2x + zx2 + yz2 + xy2 - x3 - y3 - z3 > 0

\(\Leftrightarrow\)(x2y + zx2 - x3) + (y2z + xy2 - y3) + (z2x + z2y - z3) > 0

\(\Leftrightarrow\)x2(y + z - x) + y2(z + x - y) + z2(x + y - z) > 0 (đúng)

Vì x,y,z là 3 cạnh của tam giác nên tổng 2 cạnh lớn hơn cạnh còng lại.

19 tháng 4 2017

mk mới học lớp 5 thôi nên ko giúp đc gì, thông cảm nha! chúc cậu học giỏi

21 tháng 9 2015

Giang ho dại gái à !

cậu ghi không rõ nên tớ không biết

3 tháng 10 2019

\(\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}\)

\(\le\frac{1}{2\sqrt{x^2yz}}+\frac{1}{2\sqrt{y^2xz}}+\frac{1}{2\sqrt{z^2xy}}=\frac{\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}}{2\sqrt{xyz}}\)

\(=\frac{\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}{2xyz}\le\frac{\frac{x+y+x+z+x+y}{2}}{2xyz}=\frac{x+y+z}{2xyz}\)

Dấu '=' xảy ra <=> x=y=z

3 tháng 10 2019

\(\frac{1}{x^2+yz}\le\frac{1}{2\sqrt{x^2yz}}=\frac{\frac{1}{\sqrt{x}}}{2\sqrt{xyz}}=\frac{\sqrt{yz}}{2xyz}\)

Tương tự cộng vế với vế -> \(VT\le\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}{2xyz}\le VP\)

Dấu '=' xảy ra khi x=y=z