Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2
a
\(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)
\(\Rightarrow x^3+y^3+3x^2y+3xy^2=-z^3\)
\(\Rightarrow x^3+y^3+z^3=3xy\left(x+y\right)=3xyz\)
b
Đặt \(a-b=x;b-c=y;c-a=z\Rightarrow x+y+z=0\)
Ta có bài toán mới:Cho \(x+y+z=0\).Phân tích đa thức thành nhân tử:\(x^3+y^3+z^3\)
Áp dụng kết quả câu a ta được:
\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Ta có:
x2y + y2z + z2x + zx2 + yz2 + xy2 - x3 - y3 - z3 > 0
\(\Leftrightarrow\)(x2y + zx2 - x3) + (y2z + xy2 - y3) + (z2x + z2y - z3) > 0
\(\Leftrightarrow\)x2(y + z - x) + y2(z + x - y) + z2(x + y - z) > 0 (đúng)
Vì x,y,z là 3 cạnh của tam giác nên tổng 2 cạnh lớn hơn cạnh còng lại.
mk mới học lớp 5 thôi nên ko giúp đc gì, thông cảm nha! chúc cậu học giỏi
A = 4x2y2 - (x2 + y2 - z2)2 = (2xy - x2 - y2 + z2)(2xy + x2 + y2 - z2) = [z2 - (x - y)2].[(x + y)2 - z2] = (z - x + y)(z + x - y)(x + y + z)(x + y - z)
Vì x,y,z > 0 ; x + y > z ; z + y > x và z + x > y (vì x,y,z là độ dài 3 cạnh của 1 tam giác) nên các nhân tử của A đều dương => A > 0
Bạn ko hiểu chỗ nào thì hỏi mình nhé! Mình sửa (x2 + y2 - z2) thành (x2 + y2 - z2)2
Lời giải:
Ta có:
\(x^2y+y^2z+z^2x+xy^2+yz^2+zx^2-x^3-y^3-z^3>0\)
\(\Leftrightarrow x^2(y+z-x)+y^2(x+z-y)+z^2(x+y-z)>0(*)\)
Do $x,y,z$ là độ dài ba cạnh tam giác nên:
\(\left\{\begin{matrix} x+y>z\\ y+z>x\\ z+x>y\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x+y-z>0\\ y+z-x>0\\ z+x-y>0\end{matrix}\right.\)
Do đó BĐT $(*)$ luôn đúng nên ta có đpcm.
A= 4x2y2 - (x2 + y2 - z2 )2
= (2xy - x2 - y2 + z2)(2xy + x2 + y2 - z2)
=[ z2-(x-y)2].[ (x+y)2-z2 ]
=(z-x+y)(z+x-y)(x+y-z)(z+y+z)
x,y,z là độ dài 3 cạnh của 1 tam giác=>x>0,y>0,x>0
áp dụng bất đẳng thức của tam giác
ta có:
z-x+y>0
z+x-y>0
x+y-z>0
x+y+z>0
=> tích (z-x+y)(z+x-y)(x+y-z)(x+y+z) >0
=> A>0