K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5

=> x-1/2 = 5 => x-1=5 => x=6

y-2/3 = 5 => y-2 = 15 => y =17

z-3/4=5 => z-3=20 => z=23

3 tháng 1 2018

Đặt x/2=y/3=z/5=k => x=2k,y=3k,z=5k

Ta có: xyz=2k.3k.5k=30k3 = 810 => k3 = 27 => k=3

=> x=2.3=6

y=3.3=9

z=5.3=15

21 tháng 7 2017

B)ĐỀ BÀI \(\Leftrightarrow\left(\frac{X}{2}\right)^3=\frac{X}{2}.\frac{Y}{3}.\frac{Z}{5}=\frac{810}{30}=27\\ \)

             \(\Leftrightarrow\frac{X}{2}=3\Rightarrow X=6\)

 TỪ ĐÓ SUY RA Y=9;Z=15

25 tháng 7 2017

a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)

     \(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)

THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)

\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)

Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)

             \(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)

KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)

25 tháng 7 2017

b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)  

                \(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)

Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :

\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)

\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)

\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)

Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)

     \(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)

3 tháng 10 2016

bn dào khánh linh có vẻ jioi, mk làm 1 câu rùi bn lam tip, nếu k lam dc nt cho mk

a) x/6 = y/10

bn bình phuong tlt trên va nhân 2 ty số đầu mhe: 

x/6 = x2/36 = 2x2/72

y/10 = y2/100

đến đây thì dễ rùi, nếu hiu dc thi cám ơn mk đi vi mk dăt tay bn 

cung nhau di tren con dg tuoi sang

2 tháng 10 2016

a)10x=6y=>\(5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{2x^2-y^2}{18-25}=\frac{-28}{-7}=4\)

b) \(\frac{x^3}{8}=\frac{x}{2}\)

\(\frac{y^3}{64}=\frac{y}{4}\)

\(\frac{z^3}{216}=\frac{z}{6}\)

=>........ áp dụng t.chất dãy tỉ số = nhau

c)

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)

=>\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

=>6x=12( cùng  tử)

=>x=2

14 tháng 10 2019

a) Ta có:

\(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\) (1)

\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{3}.\)

Có: \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{20}=\frac{y}{15}.\)

\(\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{15}=\frac{z}{9}.\)

=> \(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\)\(x-y-z=1.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=\frac{x-y-z}{20-15-9}=\frac{1}{-4}=\frac{-1}{4}.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{20}=-\frac{1}{4}\Rightarrow x=\left(-\frac{1}{4}\right).20=-5\\\frac{y}{15}=-\frac{1}{4}\Rightarrow y=\left(-\frac{1}{4}\right).15=-\frac{15}{4}\\\frac{z}{9}=-\frac{1}{4}\Rightarrow z=\left(-\frac{1}{4}\right).9=-\frac{9}{4}\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(-5;-\frac{15}{4};-\frac{9}{4}\right).\)

Chúc bạn học tốt!

21 tháng 11 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) = \(\frac{2x-2}{4}\) = \(\frac{3y-6}{9}\) = \(\frac{z-3}{4}\)

= \(\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}\) = \(\frac{2x-2+3y-6-z+3}{9}\) = \(\frac{50-5}{9}\) = \(\frac{45}{9}\) = 5

Ta có: \(\frac{x-1}{2}\) = 5 => x - 1 = 10 => x = 11

\(\frac{y-2}{3}\) = 5 => y - 2 = 15 => y = 17

\(\frac{z-3}{4}\) = 5 => z - 3 = 20 => z = 23

Vậy x = 11 ; y = 17 ; z = 23

 

21 tháng 11 2016

a) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)

\(\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)

Áp dụng tính chất dãy tỉ sô bằng nhau , ta có :

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

\(\Rightarrow x^2=1;y^2=4;z^2=9\)

=> x = 1 hoặc -1

y = 2 hoặc -2

z = 3 hoặc -3

6 tháng 10 2016

Mình chỉ bt làm câu d)

Cách 1: 

\(\frac{x}{y}=\frac{4}{5}\Rightarrow\frac{x}{4}=\frac{y}{5}\Rightarrow x\times\frac{x}{4}=y\times\frac{y}{5}\)

\(\Rightarrow\frac{x^2}{4}=\frac{xy}{5}\Rightarrow\frac{x^2}{4}=\frac{180}{5}=36\)

\(\Rightarrow x^2=36\times4=144=\orbr{\begin{cases}\left(+12\right)^2\\\left(-12\right)^2\end{cases}\Rightarrow x=\orbr{\begin{cases}12\\-12\end{cases}}}\)

Với x = 12 thì y = 180 : 12 = 15

Với x = -12 thì y = 180 : (-12) = -15

* Cách 2:

\(\frac{x}{y}=\frac{4}{5}\Rightarrow\frac{x}{4}=\frac{y}{5}\Rightarrow x=\frac{4}{5}y\)

Ta có: 

\(xy=180\Rightarrow\frac{4}{5}y\times x=180\times\frac{4}{5}=144\)

Mà \(\frac{4}{5}y=x\Rightarrow x^2=144\Rightarrow...\) làm tương tự câu a

6 tháng 10 2016

Nhầm làm tương tự cách 1 :

9 tháng 7 2015

2) Theo đề được: \(\frac{3x}{15}=\frac{4y}{28}=\frac{2z}{18}=\frac{5x}{25}=\frac{3y}{21}\) 

 Áp dụng t/c dãy tỉ số = nhau được:

 \(\frac{3x}{15}=\frac{4y}{28}=\frac{2z}{18}=\frac{3y}{21}=\frac{5x}{25}=\frac{3x-4y}{15-28}=\frac{3x-4y}{-13}\)

và \(\frac{3x}{15}=\frac{4y}{28}=\frac{2z}{18}=\frac{3y}{21}=\frac{5x}{25}=\frac{2z+3y-5x}{18+21-25}=\frac{2z+3y-5x}{14}\)

Vì \(\frac{3x-4y}{-13}=\frac{2z+3y-5x}{14}\) nên \(\frac{3x-4y}{2z+3y-5x}=\frac{-13}{14}\)

9 tháng 7 2015

1) Ta có: \(\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\) hay\(\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\)

Do đó: \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

=> \(\left(\frac{x}{2}\right)^2=\left(\frac{y}{4}\right)^2=\left(\frac{z}{6}\right)^2\) hay \(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)

Áp dụng tính chất dãy tỉ số bằng nhau được:

 \(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

=> \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\sqrt{\frac{1}{4}}=\frac{1}{2}\)

=> x=1 ; y=2 ; z=3