K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2018

Đáp số:  x=0

6 tháng 4 2018

x= 0 nha! =.=

a: \(x^2\left(2x-3\right)+8x-12=0\)

\(\Leftrightarrow\left(2x-3\right)\left(x^2+4\right)=0\)

=>2x-3=0

hay x=3/2

b: \(\Leftrightarrow\left(2x-5\right)\left(2x+10\right)-\left(2x-5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x+10-x+1\right)=0\)

=>(2x-5)(x+11)=0

=>x=5/2 hoặc x=-11

c: \(\Leftrightarrow2x\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

hay \(x\in\left\{0;4;-4\right\}\)

29 tháng 6 2017

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

25 tháng 12 2017

\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
\(=\frac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\frac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
a) ĐKXĐ: \(\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
b) \(P=0\Leftrightarrow x^3+4x^2-5x=0\)
\(\Leftrightarrow\)x=0 ( ko tm đkxđ) hoặc x=1(tm đkxđ) hoặc x=-5(ktmdkxd)=> x=1
c)\(P=\frac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\frac{\left(x-1\right)}{2}\)
P>0 => x>1
P<0=> x<1
Chúc bạn học tốt :)

a,Tìm ĐKXĐ

\(2x+10\ne0\Rightarrow2\left(x+5\right)\ne0\Rightarrow x\ne-5\)

\(x\ne0\)

\(2x\left(x+5\right)\ne0\Rightarrow x\ne0;x\ne-5\)

17 tháng 5 2019

a) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x-1\right)\left(x+1\right)+3x=2\)

\(\Leftrightarrow x^3+8-x\left(x^2-1\right)+3x-2=0\)

\(\Leftrightarrow x^3-x^3+x+3x+6=0\)

\(\Leftrightarrow4x+6=0\)

\(\Leftrightarrow x=\frac{-3}{2}\)

Vậy....

17 tháng 5 2019

b) \(2x^3-50x=0\)

\(\Leftrightarrow2x\left(x^2-25\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x^2=25\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)

Vậy....

14 tháng 12 2018

a) P xác định \(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+5\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}}\)

Vậy P xác định \(\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x\left(x+2\right)}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x^2\left(x+2\right)}{2x\left(x+5\right)}+\frac{\left(x-5\right)\left(x+5\right)2}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)

Có: \(P=0\)

\(\Rightarrow P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=0\Leftrightarrow x\left(x^2+4x-5\right)=0\Leftrightarrow x^2+4x-5=0\)

\(\Leftrightarrow\left(x^2-x\right)+\left(5x-5\right)=0\)

\(\Leftrightarrow x\left(x-1\right)+5\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

Vậy \(P=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

11 tháng 6 2018

Bài 1:

Đặt biểu thức trên là A

Ta có:\(A=\left(x-2\right)\left(x+1\right)-\left(x+2\right)\left(x-3\right)=x^2-x-2-\left(x^2-x-6\right)\)

                                                                                      \(=x^2-x-2-x^2+x+6=4\)

Vậy biểu thức A không phụ thuộc vào biến x (đpcm)

Bài 2:

a)\(\left(x-5\right)\left(x+2\right)+\left(x+1\right)\left(2-x\right)=15\)

\(\Leftrightarrow x^2-3x-10+x-x^2+2=15\)

\(\Leftrightarrow-2x-8=15\)

\(\Leftrightarrow-2x=23\)\(\Leftrightarrow x=\frac{-23}{2}\)

Vậy...................................................................................

câu b) tương tự câu a) thôi,bạn tự làm đi nhé

23 tháng 7 2019

1. a) Ta có: 2x2 - x + 1 = x(2x + 1) - 2x + 1 = x(2x + 1) - (2x + 1) + 2 = (x - 1)(2x + 1) + 2

Do (x - 1)(2x + 1) \(⋮\)2x + 1 

=> 2 \(⋮\)2x + 1

=> 2x + 1 \(\in\)Ư(2) = {1; -1; 2; -2}

Do : 2x + 1 là số lẻ => 2x + 1 \(\in\){1; -1}

+) 2x + 1 = 1 => 2x = 0 => x = 0

+) 2x + 1 = -1 => 2x = -2 => x = -1

b) 2x + y + 2xy - 3 = 0

=> 2x(1 + y) + (1 + y) = 4

=> (2x + 1)(1 + y) = 4

=> 2x + 1;1 + y \(\in\)Ư(4) = {1; -1;2 ;-2; 4; -4}

Do: 2x + 1 là số lẻ => 2x + 1 \(\in\){1; -1} 

            => 1 + y \(\in\){4; -4}

Lập bảng : 

    2x + 1     1      -1
    1 + y    4     -4
      x   0     -1
      y   3    -5

Vậy ....

c) x2 + 2xy = 0

=> x(x + 2y) = 0

=> \(\hept{\begin{cases}x=0\\x+2y=0\end{cases}}\)

=> \(\hept{\begin{cases}x=0\\2y=0\end{cases}}\)

=> \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy x = y = 0