Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x^2\left(2x-3\right)+8x-12=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x^2+4\right)=0\)
=>2x-3=0
hay x=3/2
b: \(\Leftrightarrow\left(2x-5\right)\left(2x+10\right)-\left(2x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+10-x+1\right)=0\)
=>(2x-5)(x+11)=0
=>x=5/2 hoặc x=-11
c: \(\Leftrightarrow2x\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
hay \(x\in\left\{0;4;-4\right\}\)
\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
\(=\frac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\frac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
a) ĐKXĐ: \(\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
b) \(P=0\Leftrightarrow x^3+4x^2-5x=0\)
\(\Leftrightarrow\)x=0 ( ko tm đkxđ) hoặc x=1(tm đkxđ) hoặc x=-5(ktmdkxd)=> x=1
c)\(P=\frac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\frac{\left(x-1\right)}{2}\)
P>0 => x>1
P<0=> x<1
Chúc bạn học tốt :)
a,Tìm ĐKXĐ
\(2x+10\ne0\Rightarrow2\left(x+5\right)\ne0\Rightarrow x\ne-5\)
\(x\ne0\)
\(2x\left(x+5\right)\ne0\Rightarrow x\ne0;x\ne-5\)
a) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x-1\right)\left(x+1\right)+3x=2\)
\(\Leftrightarrow x^3+8-x\left(x^2-1\right)+3x-2=0\)
\(\Leftrightarrow x^3-x^3+x+3x+6=0\)
\(\Leftrightarrow4x+6=0\)
\(\Leftrightarrow x=\frac{-3}{2}\)
Vậy....
b) \(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x^2-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x^2=25\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
Vậy....
a) P xác định \(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+5\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}}\)
Vậy P xác định \(\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x\left(x+2\right)}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^2\left(x+2\right)}{2x\left(x+5\right)}+\frac{\left(x-5\right)\left(x+5\right)2}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
Có: \(P=0\)
\(\Rightarrow P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=0\Leftrightarrow x\left(x^2+4x-5\right)=0\Leftrightarrow x^2+4x-5=0\)
\(\Leftrightarrow\left(x^2-x\right)+\left(5x-5\right)=0\)
\(\Leftrightarrow x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
Vậy \(P=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
Bài 1:
Đặt biểu thức trên là A
Ta có:\(A=\left(x-2\right)\left(x+1\right)-\left(x+2\right)\left(x-3\right)=x^2-x-2-\left(x^2-x-6\right)\)
\(=x^2-x-2-x^2+x+6=4\)
Vậy biểu thức A không phụ thuộc vào biến x (đpcm)
Bài 2:
a)\(\left(x-5\right)\left(x+2\right)+\left(x+1\right)\left(2-x\right)=15\)
\(\Leftrightarrow x^2-3x-10+x-x^2+2=15\)
\(\Leftrightarrow-2x-8=15\)
\(\Leftrightarrow-2x=23\)\(\Leftrightarrow x=\frac{-23}{2}\)
Vậy...................................................................................
câu b) tương tự câu a) thôi,bạn tự làm đi nhé
1. a) Ta có: 2x2 - x + 1 = x(2x + 1) - 2x + 1 = x(2x + 1) - (2x + 1) + 2 = (x - 1)(2x + 1) + 2
Do (x - 1)(2x + 1) \(⋮\)2x + 1
=> 2 \(⋮\)2x + 1
=> 2x + 1 \(\in\)Ư(2) = {1; -1; 2; -2}
Do : 2x + 1 là số lẻ => 2x + 1 \(\in\){1; -1}
+) 2x + 1 = 1 => 2x = 0 => x = 0
+) 2x + 1 = -1 => 2x = -2 => x = -1
b) 2x + y + 2xy - 3 = 0
=> 2x(1 + y) + (1 + y) = 4
=> (2x + 1)(1 + y) = 4
=> 2x + 1;1 + y \(\in\)Ư(4) = {1; -1;2 ;-2; 4; -4}
Do: 2x + 1 là số lẻ => 2x + 1 \(\in\){1; -1}
=> 1 + y \(\in\){4; -4}
Lập bảng :
2x + 1 | 1 | -1 |
1 + y | 4 | -4 |
x | 0 | -1 |
y | 3 | -5 |
Vậy ....
c) x2 + 2xy = 0
=> x(x + 2y) = 0
=> \(\hept{\begin{cases}x=0\\x+2y=0\end{cases}}\)
=> \(\hept{\begin{cases}x=0\\2y=0\end{cases}}\)
=> \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy x = y = 0
Đáp số: x=0
x= 0 nha! =.=